
Self Organized Multi Agent Swarms (SOMAS)
for Network Security Control

THESIS

Eric M. Holloway, First Lieutenant, USAF

AFIT/GCS/ENG/09-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/09-02

Self Organized Multi Agent Swarms (SOMAS) for
Network Security Control

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Eric M. Holloway, B.S.C.S

First Lieutenant, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/09-02

Abstract

With the increasing number of stealthy computer network threats computer

security has become a serious concern of commercial, industrial, and military orga-

nizations. Detection approaches for each of these general threats are of course very

important security techniques in cyberspace warfare environments. Reactive activi-

ties are also required in order to respond to intrusions and anomalies, take protective

actions, and possibly find the source of the attack and use corrective measures in these

environments. A dynamic, distributed multi-agent model is suggested as a method of

addressing these problems and generating the desired behaviors.

Contemporary security multi-agent structures are based on static, hierarchical

designs which lack scalability and flexibility due to centralization of control and com-

munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved

in this study to decentralize control and communication.

In order to define the complexity of these network security problem domains, the

formalized problem domains are mapped to partially observable Markov decision pro-

cess (POMDP) mathematical models. Agent swarm and scenario specific behaviors

are formalized within DEC-POMDP, I-POMDP, and a new F(*-POMDP) model in

order to provide mathematical insight into the tractability of their complexity. This

complexity implies that stochastic, global search for behavior solutions is the only

computationally feasible solution technique.

The formalized agent swarm model is integrated with a new architectural solu-

tion for dynamically generating the desired behaviors computationally using an offline

and online search technique. The resulting design exhibits a self organized multi-agent

swarm (SOMAS) with entangled hierarchical control and communication through the

use of multi-objective evolutionary algorithm optimization techniques. The develop-

ment of this new and innovative architecture employs an a priori generation of agent

iv

structures (rules and parameters) based upon desired swarm behaviors. Then, online

the swarm self-adapts to its environment using an online search.

SOMAS effectiveness is compared across multiple network scenarios using tech-

niques of targeting intrusions, engaging intrusions, assessing intrusions and anomalies,

and reacting to intrusions. Significant results across various behaviors and scenarios

are described using statistical testing techniques for an appropriate variety of metrics.

Also, significant results are shown in multi-objective visualization through Pareto-

front graphs and analysis along with swarm simulation animation. Suggested future

investigationsn as discussed should provide a more effective and efficient SOMAS for

addressing network security problems.

v

Acknowledgements

Above all, I want to thank Jesus Christ for inspiring this thesis. Without Him, this

life means nothing and I hope that my work, though it falls extremely short of being

worthy of Him, gives the reader a glimpse of Who He is and what He means. I admit

it is mysterious how this can be, but remember: He is God, the Logos, the principle

of all things who is also a conscious, living Person, in whom we live, move, and have

our being [John 1:1 & Acts 17:28]. What does it mean for such a Person to have come

to earth to offer us salvation for our sins and rescue us from Hell? It is a historical

fact, but also much, much more. Infinitely more than we could ever imagine.

The support of my family during this difficult time has been invaluable, and I

deeply appreciate it. It is hard to express what it means to always have someone there

for me. Professor Lamont has provided his expert guidance throughout, interesting

discussions, and has given me free reign to explore and develop my ideas. Dr. Gilbert

Peterson and Col McDonald both gave helpful feedback on the final document and

presentation. I also thank my small group for their support and encouragement. The

Brainstormers discussion group provided valuable insight and critique that shaped

the crucial SOMAS concepts.

Eric M. Holloway

vi

Table of Contents
Page

Abstract . iv

Acknowledgements . vi

List of Figures . xii

List of Tables . xv

I. The Need for Decentralized Network Security Control 1

1.1 Introduction . 1
1.2 Goals and Objectives . 3

1.3 SOMAS Architecture Design Approach 4

1.4 Measuring Success . 5

1.5 Risks . 5
1.6 Assumptions and Constraints . 6

1.7 Innovation . 6
1.8 Thesis Organization . 7

II. Background Research for Agent Based Network Security 8

2.1 Overview . 8
2.2 Network Security Overview . 8

2.2.1 Network Graph Types . 9

2.2.2 Networking Protocols . 9

2.2.3 Real World Networks . 10
2.2.4 Network Threats . 12
2.2.5 Network Security Metrics . 13

2.3 Multi-Agent Based Network Defense 15

2.3.1 Distributed Systems . 15

2.3.2 Agent Oriented Design . 16

2.3.3 Intelligent Agent Framework 18

2.3.4 Mobile Agents . 19

2.3.5 Container Model . 19
2.3.6 CyberCraft . 20

2.4 Agent Formal Modeling . 21

2.4.1 Markov Decision Processes . 21
2.4.2 Agent Ruleset . 25

2.5 Self Organization and Entangled Hierarchies 26

2.5.1 Emerging Behavior is a Real Phenomenon 27

vii

Page

2.5.2 Self Organization . 29

2.5.3 Qualifying Self Organization 30

2.5.4 Quantifying Self Organization 32

2.5.5 Constructing Self Organization 35

2.5.6 Entangled Hierarchy . 35

2.5.7 Quantifying Entangledness . 39

2.5.8 Intelligence Augmentation . 40

2.6 Search Algorithm . 41

2.6.1 Fitness Landscape Characteristics 43

2.6.2 Evolutionary Algorithm Packages 43

2.6.3 Algorithmic Complexity . 46

2.7 Simulation Packages . 47

2.7.1 Network . 47
2.7.2 Misc . 48
2.7.3 Multi-Agent System . 48

2.8 Visualization . 49
2.8.1 Self Organization Visualization 49

2.8.2 SOMAS Visualisation . 50
2.9 Testing . 51

2.9.1 MOEA Metrics . 53
2.9.2 Statistical Analysis . 56

2.9.3 Visual Data Processing . 57

2.10 Languages . 59

2.10.1 Simulation and Framework Development 60

2.10.2 Scripting . 60

2.11 Summary . 61

III. Problem Domain Considerations for Architectural Design 63

3.1 Overview . 63
3.2 Network Security Problem Domain 64

3.3 Offline and Online Swarm Generation 69
3.4 Mapping Problem Domain to POMDP Models 70

3.4.1 DEC-POMDP Model . 71
3.4.2 I-POMDP Model . 73
3.4.3 F(*-POMDP) Model . 74

3.4.4 Complexity of Deriving Model Policies 75

3.5 Solution Domain . 76
3.6 Algorithm Domain . 77

3.6.1 General Algorithm . 77

viii

Page

3.6.2 Genotype . 81

3.6.3 Phenotype . 82

3.6.4 Objective Space . 83

3.7 SOMAS Architecture . 84
3.7.1 SOMAS Algorithm Design . 84

3.7.2 Agent . 87

3.7.3 Location . 88
3.7.4 Metrics . 89
3.7.5 Scenario Actuators . 89

3.8 Summary . 89

IV. Realization of SOMAS Architecture . 91
4.1 Overview . 91
4.2 Software Development Methodology 91

4.2.1 Shared Object Coupling with Access Mediation 91

4.2.2 Formal Modelling . 92

4.3 Package Selection . 93

4.3.1 Simulation and Visualization 93
4.3.2 Evolutionary Algorithm . 94

4.4 Search Algorithms . 94

4.4.1 MOEA . 94
4.4.2 Operators and Parameter Selection For MOEA 95

4.4.3 Chromosome Evaluation . 96
4.4.4 Single Scenario Evaluation . 97

4.4.5 Multi Scenario Evaluation . 97
4.4.6 Self Organization . 97

4.4.7 Entangled Hierarchy . 99

4.5 General Simulation Implementation 101

4.5.1 Simulation Components . 103

4.5.2 Scenario Generator . 103
4.5.3 Agent Generator . 103

4.5.4 Network Generator . 104
4.5.5 Memory Kill Trigger . 104

4.5.6 Graph Update . 104

4.6 SOMAS Agent Implementation . 104

4.6.1 Basic Weighted Rule . 107

4.6.2 Sensors . 108
4.6.3 Online Search . 109

4.7 Network Implementation . 110

4.8 Real World Implementation . 111

4.9 Summary . 112

ix

Page

V. Measuring SOMAS Capabilities . 113

5.1 Overview . 113
5.2 Test Hypotheses . 113

5.3 Testing Methodology . 114

5.4 Experiment Settings . 116

5.5 Swarm Behaviors . 116
5.5.1 Swarm Specific Behaviors . 118

5.5.2 Scenario Specific Behaviors . 120

5.6 Scenarios . 125
5.7 Summary . 132

VI. SOMAS Simulation Analysis . 133

6.1 Overview . 133
6.2 Hypotheses Validation . 133

6.2.1 Self Organization Metric Improves Effectiveness of Search . . . 133

6.2.2 Visually Identifiable Self Organization is Evolved 135

6.2.3 Entangled Hierarchy More Effective as Scenario Becomes More
Complex . 136

6.3 Secondary Testing and Analysis . 138

6.3.1 Effectiveness of Network Destruction 141
6.3.2 Multi Scenario Evolution . 141
6.3.3 Evidence of Differential Evolution Usefulness 143
6.3.4 Objective Dependencies In Multi-Scenario Evolution 148

6.3.5 Self Organized Criticality . 149

6.4 Summary . 153

VII. Conclusions and Future Work . 157
7.1 Summary of Research . 157

7.2 Future Research . 158
7.2.1 SOMAS Improvements . 158

7.2.2 Testing . 161

7.2.3 Analysis . 162

Appendix A. Swarm Search Experiments (Pareto front plots) 164

Appendix B. Swarm Search Experiments (Statistics plots) 186

Appendix C. Network Destruction Experiments (Statistics plots) 189

Appendix D. Multi-Scenario Evolution Experiments (Statistics plots) . . 195

x

Page

Appendix E. Sofware Design Concepts 197

E.1 Object Oriented Design . 197

E.2 Properties Design Pattern . 197

E.2.1 General Description . 198

E.2.2 Advantages . 198

E.2.3 Disadvantages . 200

Appendix F. Behavior Range . 201

Appendix G. QuERIES Examination . 206

G.1 Overview . 206
G.2 Need for Modelling Multiple Attacks 206

G.3 Need for Adaptive Attack Vectors . 207

G.4 Addressing Needs With Top Down Policy Generation 207

Bibliography . 209

Vita . 218

xi

List of Figures
Figure Page

1 Normal hierarchy vs entangled hierarchy 39

2 SOMAS architecture development process 63

3 Offline to online search . 69

4 Genotype to phenotype conversion 83

5 SOMAS evolution concept . 85

6 SOMAS MOEA design . 86

7 Cluster rule . 87

8 Classification rule . 88

9 Offline optimizing online search fitness function 99

10 SOMAS entangled hierarchy . 100

11 Simulation component generation 102

12 Classification rule . 107

13 Sensor data transform . 108

14 Online evolution . 109

15 Online search . 110

16 Info War scenario . 127

17 Vital Element scenario . 128

18 Intrusion Elimination scenario . 129

19 DDoS scenario . 130

20 Competition scenario . 131

21 Pareto fronts comparing evolution with and without network de-

struction, part 1 . 138

22 Pareto fronts comparing evolution with and without network de-

struction, part 2 . 139

23 Pareto fronts comparing evolution with and without network de-

struction, part 3 . 140

xii

Figure Page

24 Pareto fronts comparing explorativeness of single and multi-scenario

evolution, part 1 . 142

25 Pareto fronts comparing explorativeness of single and multi-scenario

evolution, part 2 . 143

26 Pareto fronts comparing explorativeness of single and multi-scenario

evolution, part 3 . 144

27 Pareto fronts comparing explorativeness of single and multi-scenario

evolution, part 4 . 145

28 Two strategies for intrusion elimination 146

29 Independent and interacting objectives 147

30 Objective attractor . 149

31 Pareto fronts showing objective relationships for self organized crit-

icality, part 1 . 150

32 Pareto fronts showing objective relationships for self organized crit-

icality, part 2 . 151

33 Evidence that self organized criticality depends on agent creation . 155

34 Self organized criticality leading to optimal 156

35 EnemyAvoidanceScenario . 166

36 EnemyAvoidanceScenario . 167

37 EnemyAvoidanceScenario NV . 168

38 EnemyAvoidanceScenario NV . 169

39 IntrusionEliminationScenario . 170

40 IntrusionEliminationScenario . 171

41 IntrusionEliminationScenario NV 172

42 IntrusionEliminationScenario NV 173

43 DDoSScenario . 174

44 DDoSScenario . 175

45 DDoSScenario NV . 176

46 DDoSScenario NV . 177

xiii

Figure Page

47 CompetitionScenario . 178

48 CompetitionScenario . 179

49 CompetitionScenario NV . 180

50 CompetitionScenario NV . 181

51 InfoWarScenario . 182

52 InfoWarScenario . 183

53 InfoWarScenario NV . 184

54 InfoWarScenario NV . 185

55 Interpreting results diagrams . 186

56 Interpreting results diagrams . 189

57 Interpreting results diagrams . 195

xiv

List of Tables
Table Page

1 Taxonomy of commonly used MDP types 21

2 Information source mapped to search 41

3 Algorithms mapped to fitness landscape characteristics 43

4 Language hierarchy . 59

5 Problem domain elements . 64

6 Problem domain . 65

7 Search algorithm types . 79

8 Algorithms mapped to fitness landscape characteristics 80

9 Distinctions between agent aspects 102

10 All implemented sensors, rules, and actuators 105

11 Hypotheses . 114

12 Behavior experiment summary . 114

13 SOMAS MOEA Parameters . 114

14 Agent types . 124

15 Metric types . 125

16 Network types . 125

17 Scenario types . 126

18 Hypotheses results . 133

19 Legend of shorthand notation . 133

20 Effectiveness of online search to accomplish swarm behaviors with

network deactivation and activation actuators 187

21 Effectiveness of online search to accomplish swarm behaviors with-

out network deactivation and reactivation actuators 188

22 Enemy Avoidance scenario network destruction experiments 190

23 Intrusion Elimination scenario network destruction experiments . . 191

24 DDoS scenario network destruction experiments 192

xv

Table Page

25 Competition scenario network destruction experiments 193

26 Info War scenario network destruction experiments 194

27 Effectiveness of multi-scenario evolution for simple and complex be-

haviors . 196

xvi

Self Organized Multi Agent Swarms (SOMAS) for

Network Security Control

I. The Need for Decentralized Network Security Control

1.1 Introduction

Today, anyone can fire up a hacking script and take out their anger on their

neighbor. The internet is in a state of war. A secret hacking battle between the US

and China has been reported [113]. Russian computers have disrupted Estonia with

denial of service attacks [136]. Al Queda extensively uses the internet for gaining

support and organizing its operations [129]. The bitter, and ancient Sunni/Shiite

feud has spilled over into modernity where websites have been defaced with threats

and webservers have been shut down [13] [14]. Sweden and Turkey have fought each

other online over the caricature of Muhammed in Swedish newspapers [12]. The

proliferation of attacks has lead some to question whether cyber vigilante-ism might

be a good idea [26]. The Air Force has made repeated, recent statements that it is

no longer content with merely playing the defensive game, that reactivity is not an

option [63] [20] [124]. It is not just nations that are involved. With the increasing

number of stealthy computer network threats, computer security has become a serious

concern of commercial, industrial, and military organizations from financial activities

and power system operations to internet information communication, Cybercraft, and

aircraft reconnaissance activities.

To stop the network security and stability threat important security tools are

needed such as outside intrusion detection systems, insider covert network detection,

resource protection, system anomaly detection techniques, attack reaction, and infor-

mation surveillance. Many such systems have been proposed using standard hierarchi-

cal management structures with identification of features employing classical pattern

recognition algorithms. Also used for network security are bio-inspired approaches

1

from artificial immune system constructs [68] to particle swarm approaches [42] with

support vector machines [84], as well as incorporating multi-objective aspects [39].

Various commercial security packages embed many of the associated algorithms. Nev-

ertheless, such network security systems are generally quite slow and limited when

operated automatically due to brittle hierarchical communication and control, and

lack of autonomy.

Network security threats run the gambit from internal to external attacks. The

most serious threats come from insider attacks, denial of service attacks, and infor-

mation exploitation. These attacks aim at exploiting and corrupting information and

capabilities on the networks, and the deactivation of network defense. The online bat-

tlefield requires a security solution that flexibly adapts in real-time to the constant

flux of cyber war, while still providing overall control with humans possibly in the

loop. All of this must be achieved without centralized control.

Currently, the Air Force is developing a defensive infrastructure by implementing

secure middleware across all network hosts [65]. This defensive architecture is secure

but rigid and hierarchical. Research shows that mobile, multi agent systems can

provide the needed decentralized flexibility for such security systems, see Section 2.3.4.

The solution is found in nature: extensive, vast self organized systems exist that semi-

autonomously accomplish incredible complex tasks of resource management, defense,

and offense without an overarching leader or internal blueprint.

Self organization is exhibited by many physical systems, ranging from the optical

[50], to [70], to biological [66]. Additionally, self organization is a real phenomena

according to mathematics and computer science [101]. This research explores how

self organization allows the swarm behavior to adapt and respond to its environment

in a decentralized manner without hierarchical control, using entangled hierarchies.

2

1.2 Goals and Objectives

The research goal is to investigate network security real-time performance using

a swarm of autonomous self organized agents that evolve a non-hierarchical entangled

Cyberspace security management structure.

In particular, this research defines a self-organized multi-agent swarm (SOMAS)

system with a limited number of desired behaviors. A mobile, multi agent system that

uses self organization to create entangled hierarchies is as or more robust, adaptive,

and overall effective and efficient for accomplishing network based behaviors than

systems that do not use self organization and entangled hierarchies. Therefore, the

general objectives to show measurable completion of the goal are:

1. Create a robust simulation framework for evolving self organizing multi-agent

systems (SOMAS)

(a) Approach/foundation

• Environment: formally defined computational network

• Agent domain: formally defined mobile multi-agent swarm

• Formal modeling: augmented POMDP models

• Search: multi-objective evolutionary algorithms (MOEA)

• Evaluation: simulation and metrics

(b) Design

• Two level search

• Evolving self organized swarms

• Intrinsic entangled hierarchy communication and control

• Pareto front optimization

2. Evaluate feasibility of self organization for effective accomplishment of desired

behaviors

(a) Approach/foundation

3

• Pareto plots

• Behavior visualization

(b) Design

• Pareto plot objective correlation analysis

• Visual identification of self organization

3. Evaluate feasibility of entangled hierarchies for effective accomplishment of de-

sired behaviors

(a) Approach/foundation

• Pareto compliant metrics

• Non-parametric hypothesis tests

(b) Design

• Pairwise swarm behavior hypothesis testing

1.3 SOMAS Architecture Design Approach

The off-line approach makes use of simulations to evaluate generated agents

for a finite set of network security behaviors using random network configurations.

This is represented by a decentralized partially observable Markov decision process

(DEC-POMDP) [22] model. This model is chosen because the global network state

and reward function can be observed for evaluating the global fitness of the swarm

during off-line generation.

The on-line approach uses local data from the network the swarm is on, and

thus an interactive partially observable Markov decision process (I-POMDP) [40] rep-

resents the on-line approach. The I-POMDP model is chosen because it presupposes

individual agents are only capable of local observations of other agents in the swarm,

and can only observe a local reward function. Furthermore, due to the inability of

the POMDP models to fully represent a dynamic problem domain, the models are

augmented. The augmentation replaces the state transition function with a model

4

transition function. Thus, the models are capable of representing and adapting to dy-

namic systems. However, the POMDP models are not used for producing the swarm’s

rules. Both the off-line and on-line approaches make use of evolutionary operators

to achieve optimum or optimal agent rules and parameters. The off-line production

uses an explicit evolutionary algorithm and the on-line production’s evolutionary al-

gorithm is implicit in the interaction of the SOMAS and the environment. The swarm

behaviors are formalized as reward functions for computational processing. The for-

malization consists of mathematical equations and well formed first order predicate

logic formul æ.

1.4 Measuring Success

The attainment of these objectives can be achieved through a computational

and stochastic measurement evaluation along with a visualization simulation of the

results of the “optimization.” Therefore, additional, derivative objectives are:

1. Develop new appropriate metrics for evaluating SOMAS behaviors

2. Use metrics to measure achievement of behaviors

3. Visualize swarm behaviors to qualify behavior characteristics

The behaviors are evaluated in two ways: statistical tests and visualization.

The statistical tests give statistical quantifications of performance, while visualiza-

tion gives a more qualitative analysis. Visual analysis consists of specifying visually

identifiable characteristics, and then determining whether they exist within the swarm

visualization.

1.5 Risks

Since the solution technique is stochastic, the major risk is due to the approx-

imate nature of solutions. Approximation implies that there is imperfection, and

consequently the SOMA swarm may not react appropriately to a given scenario. A

5

second risk is due to the degree of self organization the swarms exhibit. If they do

not remain self organized, then the swarm can either become trivial or chaotic, and

therefore useless in both cases. Finally, the complexity and seriousness of the threats

in Cyberspace may mean that the SOMA approach requires additional architectural

modification.

1.6 Assumptions and Constraints

• The model developed for the agents assumes limited domain complexity. The

agents are assumed to operate within a container model, which is a valid as-

sumption if they are to be deployed in the CyberCraft structure.

• The agent structure consists of sensors, rules, and actuators. Additionally, the

agent contains a memory that can carry different state information relevant for

the agent, such as a fitness value.

• The OSI stack, as well as bandwidth and latency issues, are not addressed for

network communication. Communication is simplified to direct delivery between

nodes, i.e. an agent is merely moved from one node’s data-structure and placed

in another’s data-structure. This means the agents are only being represented

on each node, not on any intermediary edges unlike an actual network.

• The agents cannot fully trust each other due to the stochastic environment and

the limitation of partial observations of the environment and each other. This

constrains the POMDP model representing the agent swarm to a decentral-

ized model, such as DEC-POMDP or I-POMDP, since complete swarm state

information is not collectively available.

1.7 Innovation

The general innovative elements of this research are

• Development and implementation of a framework for the multi-objective evolu-

tion and testing of agent swarms.

6

• Quantified self organization

• Entangled hierarchies

• Most of the scenario behaviors, except for intrusion detection, are innovative

1.8 Thesis Organization

Section II describes the background research for the SOMAS problem domain, as

well as symbolically describing the problem and algorithm domain. Section III breaks

down the problem domain into its representation and complexity, and describes the

design choices for creating the solution. Section IV explains the low level engineering

of the design choices to create a solution. Section IV specifies the hypotheses to be

tested and how the solution will be tested in order to prove or disprove the hypotheses.

Section VI presents and analyzes the results. Finally, Section VII presents the research

conclusions and suggested future work.

7

II. Background Research for Agent Based Network Security

2.1 Overview

Current network threats are various and quite serious, see Section 2.2. Ac-

cordingly, there are many contemporary approaches to network security. A recent

trend is to decompose network security into multi-agent systems, in order to both

distribute and automate security tasks, see Section 2.3. Multi-agent systems can be

formalized in a variety of Ways 2.4. Self organization and tangled hierarchies are

appropriate concepts for solving the problems of decentralized communication and

control, see Section 2.5. To generate the self organized multi-agent system (SOMAS),

search algorithms are necessary for finding optimum behavior configurations, see Sec-

tion 2.6, and simulations for the simulating the generated system, see Section 2.7.

Once the behaviors are generated, visualizations are required for viewing the results,

see Section 2.8, and test and analysis procedures to determine whether the SOMAS

goals are achieved, see Section 2.9. Finally, the possible languages for implement-

ing the SOMAS framework are covered in Section 2.10. However, this chapter only

provides background material for the design and implementation discussions. Those

discussions are addressed in Chapters III and IV.

2.2 Network Security Overview

The realm of computer networks crosses a wide variety of disciplines. From the

theoretical angle, graph theory is very important for determining crucial invariant

network properties and developing efficient routing algorithms. The computer sci-

entist also has a tremendous job of getting all the disparate networked systems to

talk with each other, without also bringing the information flow to a standstill due

to complexity overhead. Then, from the engineering perspective, computer networks

are extremely complex. Not only must the engineer know how to route information

around the network, he must also be knowledgeable about all the kinds of systems

that can use and interact with the network. The great complexity inherent in com-

puter networks means it is very difficult to plug all the holes and keep out threats. It

8

seems that every day there is yet another debilitating attack vector. Thus, the net-

work defenders has a very difficult task cut out for them of keeping the information

flows safe and secure.

2.2.1 Network Graph Types. There are numerous kinds of graphs that

can form the network topology. The simplest topologies are line, circle, star, and

randomly interconnected, see Figure 19. Additionally, these graphs can possess certain

characteristic. An example is planar graphs, where the graph can be created on a

2D surface without overlapping edges. Non planar graphs are the complement of

planar graphs, encompasing graphs that require three dimensions. However, three

dimensions is the maximum number of dimensions necessary to connect any graph

without crossing edges. This is intuitive because if any edges cross in two dimensions

they can just go around each other in the third dimension.

Scale invariant graphs consist of sections that exhibit the same pattern of edge

degrees for any arbitrary section of any scale. While not exactly the same, often

campus scale and larger networks exhibit this pattern, see Figure 16. Small world

graphs possess the property that every node is linked within N edges, where N is

small in magnitude. All of these graph related issues are covered in the mathematical

discipline of graph theory.

Such network graph characteristics have an impact on the best rules for gener-

ating certain swarm behaviors. For instance, if the swarm is on a randomly intercon-

nected graph, then, probabilistically speaking, the same rules should work generally

well regardless of where an agent is on the graph. On the other hand, if the graph

is composed of highly interconnected sections that are, in turn, sparsely connected,

agents require different rules to have the same effect depending on the section they

are in, and whether the behavior needs to span multiple sections.

2.2.2 Networking Protocols. Most networks in the real world make use of a

protocol for relaying information. According to the end-to-end principle [108], system

9

design accumulates too much overhead if every part of the system tries to account

for all possible needs. Thus, similar to the design principle guiding agent oriented

modelling, it is best to have particular services addressed by the part of the system

that actually requires the services. Thus, protocols are developed, which are schema

composed of the bare minimum level of information necessary to perform the required

service.

For example, in order to transport information from point A to point B, it

is generally only necessary to know the location of point B. Thus, the transport

service only checks the part of its schema that tells it where B is, and leaves the

rest of the information alone. The protocols used by networks are often stacked,

since higher level services are based on lower level services. In the Internet, the OSI

stack [8] is used. There are low level protocols for moving information from point

A to B [4], middle level protocols for splitting messages into packets and routing

them along a particular path [10], and higher level protocols for dealing with end user

application services [2]. The use of the protocol stacks places an overhead on the

network transportation, and can introduce new forms of errors. The protocols also

provide useful information. However, if the agents in the multi agent system are to

interpret all the various protocols used by all possible networks they may inhabit, the

agents become too large for use. Consequently, the end to end principle is followed,

and the job of interpreting the protocol data into information is pushed to the host.

The agent only needs to know an interface for accessing this information.

2.2.3 Real World Networks. There are numerous real world networks. They

range from extremely local networks, such as between a laptop computer and a blue-

tooth phone, to global networks, such as the Internet or the telecommunications

network.

As mentioned in Section 2.2.1, the properties of networks tend to change as

they become larger. At the local level, networks are fairly ergodic, their measurement

does not change significantly depending on where they are measured. However, com-

10

munication in such networks takes on too much overhead once the network passes

a certain size. In this case, the network becomes split into sub-sections, which, in

turn, contain other subsections. As the scale increases, the subsections resemble the

global structure, whereas as the scale decreases the subsections resemble the local

structure [86].

Networks can either be static or dynamic. Dynamic network topologies are most

often found in wireless settings, since wireless nodes tend to change their geographical

relationships. An example of an existing dynamic network topology is the Network on

Wheels (NOW) [87]. NOW is an ad hoc network formed between cars on the highway.

Utilizing the network, the cars can route themselves very effectively and efficiently by

identifying existing routes, traffic patterns, and problems.

On the other hand, there are a greater number of static networks. These can

be found ranging almost every institutional domain, from the financial sector, to the

business world, to military operations. The networks particular to a specific domain,

such as finances, tend to be fairly sparse with high bandwidth between nodes. Net-

works aimed at a more general demographic and use more hierarchical organizations

to provide more efficient communication.

Once network topologies are implemented in the real world, new concerns come

into play. For instance, the links between nodes take on important characteristics,

such as bandwidth and latency. Furthermore, links can become hyperedges, as in the

case of wireless networks, where the same medium links all network nodes.

Communication and the routing of information also becomes a concern. While

Metcalfe states the addition of network nodes adds polynomial value to a network [81],

Reed explains how the network actually provides more than just communication be-

tween nodes, it provides the basis for higher level networks to form. Today, one pop-

ular variant of this idea is social networking. The possibility of higher level networks

raises the potential value of a new network node to exponential rates of increase [104].

However, this value is both negative and positive. Therefore, the net gain from an

11

added node may actually be negative, and the increase in nodes can rapidly lead to

destabilizing the network. The interplay between negative and positive gain led to a

reevaluation of Metcalfe’s and Reed’s laws in [91], stating that the rate of increase,

while still superlinear, is more on the order O(n log n). According to the authors, this

growth rate more accurately reflects empirical observations.

2.2.4 Network Threats.

• Web Based Insider Attacks: According to the multitude of internet analysis

and military leadership, we are fighting a losing battle against those who create

malware. Although, the external worm threat is currently under control, the

computer virus signature types have grown to astronomical numbers. While any

unpatched computer that is hooked up to the internet is guaranteed to be at-

tacked and compromised in less than 20 minutes [35], most attacks are ineffective

against a properly protected computer. Consequently, the contemporary mal-

ware effort has moved to the client side and application layer, embedding exploits

in web pages, emails, and external storage devices such as thumb drives [120].

The implication is that the threat has moved inside the network [80] [67]. Thus,

border control is no longer adequate. Intrusion detection must look both at

network traffic and host activity. Any kind of defensive system must be able to

handle an internal threat by identifying it, quarantining it, and eliminating the

malicious entities involved [93].

• Botnets: Recently, there have been many notable large scale botnets. Examples

include Storm and Nugache [111], which some have estimated have over a million

infected PCs. Such botnets are used for a wide variety of purposes, such as denial

of service attacks, password cracking, information stealing, etc. Furthermore,

these botnets are maintained by software engineering professionals, and are

difficult to counteract [44].

• Denial of Service Attacks: Even though the threat of external infiltration by

worms and viruses is low, denial of service attacks are still a very real problem, as

12

recent events in Estonia show [136]. The threat is heightened when the attacking

computers can be within as well as outside the targeted network, brought about

by internal intrusion.

• Information Exploitation and Corruption: The degradation of network perfor-

mance results in the corruption and destruction of information. Besides corrupt-

ing information, malicious agents exploit and remove confidential information

from the networks .

• Counter Defense: Finally, the defenders of all the information are the secondary,

yet immediate, target of malicious agents; since defense keeps attackers from

desired information.

2.2.5 Network Security Metrics. To gauge a network security system, it is

important to have metrics for evaluating its performance. There are two aspects to

network security metrics. First, the issue is what and where to use them. Second, the

issue is how to measure the security metrics are.

2.2.5.1 Use of Security Metrics. There are many different areas in

which security can be measured [21]. It can be measured at the network layer such

as counting the number of packet types. It can be measured at the user level by

monitoring network usage patterns. It can be measured at the organizational level by

determining the level of security education. However, it is possible to have too many

metrics, such that operators can suffer from data overload [54].

It is important to pick a minimal set of key metrics in order to make the job of

security monitoring manageable. To do this a person needs to determine the network

security areas that are important [106] and establish a method for creating a definitive

metric [97]. For instance, a good list of security areas [106]:

• Policy and compliance

• Network and machine monitoring

13

• Outreach and education

• Legal compliance: DMCA, PCI, FERPA, etc.

• ID: authorization and authentication

• Asset protection

• Privacy

A good procedure for creating metrics [97]:

1. Define the metrics program goal(s) and objectives

2. Decide which metrics to generate

3. Develop strategies for generating the metrics

4. Establish benchmarks and targets

5. Determine how the metrics will be reported

6. Create an action plan and act on it

7. Establish a formal program review/refinement cycle

2.2.5.2 Measuring Security Metrics. Once the metrics have been es-

tablished then the issue is how to measure them. Metrics can be measured with or

without a model, for instance a simple model-less metric is to measure how many

network incidents occur each month with different levels of severity. However, such

metrics only specify how a system is currently doing, or may do in the future. In

order to define the system’s security characteristics a-temporally, the system must be

formally modelled in a way that captures its general structure. The model itself is

not necessarily measured, though it may, but measurements are taken as the model

is simulated in different ways.

A number of researchers use different variants of POMDP models to do this,

while other researchers have developed specialized formal models for network security.

In one example, POMDP models have been used to characterize a system’s surviv-

ability [32] by establishing policies to maximize the uptime for network elements. A

14

similar work was done by [109]. The authors of [103] use POMDPs to define optimal

routing protocols. In [141] the authors develop a model to counter multi-stage collu-

sive attacks and develop two algorithms to find the key observations in the POMDP

model that allow the most dangerous attack vectors. By removing these observa-

tions from the system, they mitigate the attacker’s ability to successfully complete

his attack.

Besides POMDP models, a there are a few other formal models that are used,

which tend to more directly resemble a network or an attack. The authors of [79]

create a model that accurately reflects a conventional network, down to the use of

IP addresses. The authors of [94] use an attack graph, which is a graph that links

different attack nodes to each other, to derive the weakest conditions for a successful

network attack on a given network. Networks can thus be ranked against each other

using these conditions such that a network with weaker conditions is more vulnerable.

2.3 Multi-Agent Based Network Defense

Due to the great complexity of network defense, it is a tall order for a single

application to take care of. Just as one police officer cannot patrol a city and enforce

the law, so one network defense solution cannot capture the totality of network de-

fense. It makes sense to divide up the job of network defense so there are different

applications for different concerns. Once the job of defense is divided up among dif-

ferent applications around the network, network defense is a distributed system, and

requires a different way of thinking than centralized systems.

2.3.1 Distributed Systems. Middle-ware provides a unified mechanism and

interface for access to system-wide services. The goal of middle-ware is to make the

system invisible to the end user. This discipline of distributed systems is providing

middle-ware that fulfills, as best as possible, the tradeoff between transparency, lo-

cality, and availability [127]. The end user should be under the illusion that they are

only accessing local resources through a single system. An important manifestation

15

of this design today is service oriented architecture [96]. Service oriented architecture

is a middleware system that aims to provide access to a diverse set of resources such

that the end user can combine them in arbitrary manners to fulfill a set of objectives.

There are a number of issues involved with providing the illusion of accessing a

single, local system. First, a universal chronology is essential in many applications.

One example is the make tool, which requires chronological information to know which

files to compile. Second, the location of system wide resources must be known so they

can be accessed. Finally, both issues have to deal with the possibility of failure and

need to be able to backtrack so failures do not result in corruption of the system state.

One of the most important concepts for this discipline is the end-to-end prin-

ciple [108]. The end-to-end principle states that concerns should be handled at the

point where they are needed. For instance, if only some hosts in a network need

secure communication, and there are varying security requirements, it is best for the

particular hosts to handle their security instead of each node in the transport layer

of the OSI model. The goal is to prevent bloat and fragility.

2.3.2 Agent Oriented Design. Agent oriented design can be considered an

extension of object oriented design. Its distinguishing feature is that the objects are

autonomous, instead of only reactive. That is, the objects do not depend on external

triggers to act. Thus, there are two primary facets to agent oriented modelling:

autonomy and systemic. The first facet is reflected in the domain of intelligent agents,

which is covered in the following discussion. The second is found in the study of multi-

agent systems, which is covered in Subsection 2.3.3.

The author of [62] makes the case for agent oriented modelling in complex prob-

lem domains characterized by stable sub components. The primary idea is that such

large systems are decomposed into individual agents. This reduces the application

logic because the system no longer needs to account for every combination of agents.

Additionally, the system becomes more flexible, since new agents can be introduced

and old ones removed without having to change the system architecture. Finally,

16

since the agents are autonomous, they can carry out complex group tasks without

external involvement [62].

The general capability to accomplish the tasks is called the swarm’s behavior. A

behavior can be composed of sub behaviors, which accomplish the necessary subtasks

to complete the main task. Besides task completion, behaviors can also be general

characteristics that most task completion requires, such as swarm stability. Nature

can be modeled as a network of agents. An example of the agent based systems is

an ecosystem. An ecosystem is composed of a great variety of entities all attempting

to maximize their local reward. Yet, with local maximization they are able to create

a superstructure conducive to all their goals. An agent is an information processing

device. Since all physical agents are finite, they can only process a finite amount of

information. Consequently, no agent has perfect information and cannot completely

represent its environment.

However, the aggregate of communicating agents can be capable of representing

their environment to a greater degree, and process this information as a group. Addi-

tionally, even though in theory a swarm is not computationally different than a single

agent, real worlds constraints imply a swarm with decentralized information process-

ing is inherently more capable than a single agent. Thus, in a swarm there is always

an irreducible, emergent level that can be considered an information processing unit

itself. This is the basis for the self organizing and multi-agent aspects of SOMA. The

self organization is inherent in the emergent, irreducible ruleset.

Once a system has been decomposed into multiple agents, then the question

becomes one of how to organize them. multi-agent systems (MAS) can either be

centrally organized or decentralized. MASs can have a variety of different commu-

nication structures, ranging from flat, to hierarchical, to a hybrid of both. Finally,

the MAS can either be composed of homogeneous or heterogeneous agents. A sim-

ilar topic to multi-agent systems is multi-agent swarms. A swarm is a subtype of a

MAS. Whereas a MAS can take on many different kinds of organizations and levels

17

of autonomy, swarms tend to be flatly organized and highly autonomous. A common

example of a swarm system is boids [105] by C. Reynolds.

Such multi-agent systems are covered extensively in the literature, both in the-

ory and application. On the theoretical side, [90] describes a language and method

for creating a multitude of virtual machines that evolve themselves, that are both

sustain themselves and their environment (autopoesis) and accomplish this through

stable feedback mechanisms (hypercycles). The author of [73] gives an overview of

the state of the art in swarm intelligence in 2000. Swarm intelligence is an important

augmentation to multi-agent design. Instead of modelling agent cognition explicitly,

as Wooldridge and Jennings document as an unsuccessful approach in [61], cognition

(intelligence) is implicit in the large number of simple agents. This is an elaboration

on the ideas behind Brooks’ subsumption architecture, non representational reasoning

and intelligence [28].

The work of [95] is a more recent overview (2005) of cooperative multi-agent

learning (similar to swarm intelligence). The authors state that the field of multi-agent

learning suffers from lack of realism. The number of agents in a group is generally

quite small, the environments are limited, and the objectives simplistic. On the more

application oriented side [134] explains how swarm intelligence leads to effective route

discovery in networks, [128] is a dissertation on the use of ant colonies to provide

fault tolerance for network communication, and [72] combines the business version of

multi-agent systems, services oriented architecture, with self organization.

2.3.3 Intelligent Agent Framework. As argued by Stytz, et al [126], military

networks require a distributed intelligent agent framework for security in order to

avoid the weaknesses associated with centralized control structures, such as lack of

scalability, single points of failure, and fragility. According to Servat and Drogoul.

[116], the networks of the future should be characterized by a ubiquity of mobile end

devices, even perhaps with nanotechnology. Such a large, heterogeneous environment

18

makes centralized control extremely difficult and costly, which further implies that

controlling the system requires a MAS.

Intelligent agents are agents that have decision making abilities. These decision

making abilities are based on artificial intelligence (AI). AI consists of knowledge

representation and search [88]. Knowledge and rule representation in agents can be

composed of first order propositional logic, modal logic, and probability [37].

There are a number of outstanding problems in AI that so far prohibit the

creation of strong AI that emulates human intelligence, and thus truly intelligent

agents. One significant problem is the framing problem, which is determining what

information to retain from past states. The information from the past can increase

quite rapidly, and it is difficult to predict what the future requires. Thus it is currently

an unsolved problem. Another issue is dealing with uncertainty. It is possible to

model uncertainty for a single agent and develop policies for acting with uncertainty

for small problem domains. But, solving the general problem is PSPACE-complete

and increasing the number of agents makes the problem even more difficult. All of

these issues are covered in [88].

2.3.4 Mobile Agents. In [110], the authors argue that allowing mobility

in software agents allows the MAS to have a greater range of ability. Yet, there

is a danger of multi-agent systems devolving into chaos, and adding a new degree of

freedom, with the allowance of movement, threatens to produce an extremely unstable

system. Consequently, human involvement is required. In this regard, the concept

of controlled self organization has been developed [27], essentially a hybrid between

the extremes of completely autonomous self organization, and completely controlled

external organization.

2.3.5 Container Model. Once agents are mobile it can become quite a

complex task to allow them to operate in a heterogeneous environment, which is

especially problematic since most networks are very heterogeneous. One way to solve

19

this problem is to use a container model for the agents. Essentially, the container is a

specialized virtual machine for agents. The container abstracts away the host specific

details and provides the agent with a common interface of sensors and actuators

across all hosts, applying the end to end principle [108]. Additionally, the container

can provide utility functions for local agent interaction, such as providing each agent

access to the data structures of other agents based on access rights. Formally, the

container is characterized by the following tuple:

< Parameters, Accesslist, Sensors,Rules, Actuators >

Abstractly speaking, the agents are essentially sets of rules and parameters in

the container which can be shifted from container to container. On the other hand, the

container specific parameters and rules are not transported. An agent is differentiated

from another agent by the rules that are transported and the access list.

2.3.6 CyberCraft. To defend against a network attack, a comprehensive

solution is needed, allowing security to quickly be pushed out to all nodes and rapidly

report back incidents. This security solution can be considered a form of middleware,

a distributed computing system that all users of the network interact within. The Air

Force is developing secure middleware called Cybercraft [65]. While the exact imple-

mentation design is still in development, it is based on a container model. Each node

receives and deploys software “payloads” governed by a policy. Using these payloads,

the Cybercraft architecture provides the operator with situational awareness.

With a CyberCraft infrastructure in place, it remains to populate the infras-

tructure with payloads. The payloads can generally be described as agents, and as

such are encompassed by agent oriented design. Using the situational awareness ca-

pability, the ultimate aim of the CyberCraft model is to automatically respond to

cyber attacks using the payloads. However, since the system is meant to be largely

20

Table 1: Taxonomy of commonly used MDP types

Type Scale S O A T Ω R

MDP L L N/a L L L L
DEC-MDP G L N/a L L L G
POMDP L L L L L L L
DEC-POMDP G G L L R L G
I-POMDP R R R L R R R
R-MTDP G R L R R L G

L = Local, R = Regional, G = Global

autonomous, trust is the primary concern. The commanders have to be sure they can

trust the CyberCraft to accomplish their intent without disrupting the system.

2.4 Agent Formal Modeling

There are many ways that agents can be formally modelled. The benefit of

using a formal model, as opposed to just implementing an agent design in code, is

the generality of the formal model. Consequently, anything that applies to the formal

model applies to the particular agent implementation in question.

2.4.1 Markov Decision Processes. Markov decision processes (MDP) are

reducible to the agent schema as outlined by Russel and Norvig in [88]. The agent

schema consists of sensors, actuators, and state. The agent acts within an environment

that may or may not have rewards. When the agent cannot obtain a full observation of

its environment, it is represented with a partially observable Markov decision process

(POMDP) [64].

The elements of the schema correspond to the POMDP tuple in this way: S

is the agent’s state, A are the agent’s actuators, O are the agent’s observations, and

R are the rewards the agent can receive [88]. Along with the basic agent schema

described in [88], there is a taxonomy of agents, ranging from purely reactive agents

to decision theoretic agents. The mapping parameters T and Ω are the symbolic

equivalent of the agent’s cognitive capabilities. Whereas MDPs are a simple matter

to solve and generate a policy from, since they are P-complete [88],

21

POMDPs are a more complex matter because the true state has to be in-

ferred from observations. POMDPs are consequently PSPACE-complete, which is

only tractable for small problem domains. POMDP models can either be solved for

an finite horizon, or for a infinite horizon [64]. The horizon denotes the number of

transitions in a Markov chain a model is evaluated for. A finite horizon can be solved

using straightforward numerical techniques, such as matrix multiplication combined

with various pruning and reward propagation algorithms. The approach used can

either be a feedforward or a backtracking algorithm. The backtracking approach is

most convenient if a utility function exists. Generating a policy, then, is a matter of

backtracking from the end states with rewards. If no utility function exists, then the

feedforward algorithms give a total policy for all decision branches. In either case,

the complexity of the decision space climbs exponentially as the number of transi-

tions increase as with a breadth first search. The complexity is O(bt), where b is the

branching factor, i.e. the number of decisions an agent has for any given state, and t

is the number of transitions.

Solving for the infinite horizon is much more complex, and requires mathemati-

cal analysis of the model, since there are a countable infinite number of transitions to

be evaluated using straightforward numerical techniques. One such infinite horizon

technique is to find the Nash equilibrium of a competitive multi-agent model. The

infinite horizon can be approximated by using finite horizon where the values have

converged to within a certain threshold based on an error criteria.

A standard POMDP only represents one agent. However, it is often useful

to model more than one agent such that all, some, or none share a reward func-

tion, yet all can affect each other and the environment. These models are the de-

centralized POMDP (DEC-POMDP), role based multi-agent team decision problem

(R-MTDP), and interactive POMDP (I-POMDP), respectively. The DEC-POMDP

and I-POMDP models encompass most of the other models. The exception to this

is that they do not group actions into roles like the R-MTDP model. Additionally,

while the majority of POMDP models are not recursive, and thus have countably

22

infinite horizons, the interactive POMDP (I-POMDP) model is recursive, since the

policy is based both on the observations of the environment and the beliefs the agents

have about each others’ policies [40]. There are thus two different horizon axes, one

for actions in the environment and the other for recursive levels in mutual agent be-

liefs [48]. Additionally, since the beliefs contain policies as well and thus the horizon

consists of an infinite number of infinite sets, the I-POMDP’s horizon is uncountably

infinite.

Finding a DEC-POMDP policy is NEXP-complete [22] (see Section 2.6.3 for

an algorithmic complexity discussion) and finding an I-POMDP policy is harder or

impossible due to the potentially uncountably infinite horizon. In the literature, all

deterministic, optimal techniques for solving these MDP models do not scale past a

few agents in a very simple problem domain. Consequently, due to the great com-

plexity in solving the general case of POMDP models, heuristic based searches and

memoization [51] are necessary. Sometimes the problem domain lends itself to a sig-

nificant dimensionality and complexity reduction. In the case of the I-POMDP, if

only the previous state’s agent beliefs are necessary to predict the next state, then

the problem is solvable too.

Using principal component analysis, Spaan and Spaan have reduced a real world

POMDP model complexity such that it is tractable to generate its policy [122]. An-

other technique, as used by [31], reduces the dimension space by filtering only the

most commonly used observations. Another technique is to use a stochastic process

to generate an approximation to the optimal policy, such as with stochastic particle

filtering [41]. These techniques have met with limited success, but not at the level

that is required by the SOMAS problem domain.

Besides the problem of intractability, neither the DEC-POMDP or I-POMDP

model allows for the production or deletion of agents. This can be simulated by a

priori establishing the maximum number of possible agents, and then changing how

they influence the agent swarm based on transition rules representing creation and

23

deletion. However, the maximum possible number of agents is significantly larger

than the number that is usually needed, so these models are composed of a lot of

wasted space and become even more intractable. Finally, the maximum number of

agents can be potentially limitless, and a finite model is incapable of handling an

arbitrary infinite set. To solve these problems, POMDP models are augmented with

functions because functions can produce a potentially unlimited number of values

while still having a finite representation. Of course, this means the models can no

longer be solved in the general case by an algorithm, since the models can be Turing

complete [11].

The traditional, finite *POMDP models, where * stands for extensions such as

DEC and I, are equivalent to regular grammars in a finite state machines [3], where

strings are state/action histories. To augment the *POMDP model with a function,

the state transition function, T , is replaced with a model transition function, T ′, as

detailed in formula (1). A represents a non empty set of actions.

T ′ : ∗POMDP × S×A→ ∗POMDP (1)

As long as the number of agents is constant or monotonically decreasing, then

the multi-agent model is equivalent to a finite state machine with no pushdown stores.

Once the number of agents is monotonically increasing without limit, then the multi-

agent model is equivalent to a finite state machine with one pushdown store. Finally,

if the number of agents can either decrease or increase without limit, then the multi-

agent model is equivalent to a finite state machine with two pushdown stores. A finite

state machine with two pushdown stores is equivalent to a Turing machine [77].

As a concrete example, the T ′ function can add or remove agent tuples from an I-

POMDP model, as well as change the other dependent agent tuples accordingly. Thus,

T ′ adds lengthening and shortening rules for manipulating the size of the *POMDP

tuple. According to [55], the existence of lengthening and shortening rules in a formal

system means it is potentially undecidable. This is because such a formal system

24

can be equivalent to a Turing machine, and thus susceptible to the halting problem.

Therefore, the F (∗POMDP) models are algorithmically unsolvable in the general

case, though this does not preclude them being mathematically solvable in particular

cases.

2.4.2 Agent Ruleset. As Norvig describes in [88], the agent can be ab-

stractly considered a table matching observations to actions, which Norvig terms the

agent’s “external” characterization. The “internal” characterization of the agent is a

program. There are many different general characterizations for the agent program.

A representation that is used in much of agent learning is a policy. A policy maps

observations to actions, similar to Norvig’s “external” characterization of agents. A

policy can either be optimal or suboptimal, fixed or changing. It can either be gen-

erated a priori, as is often the case with a POMDP model, or it can be generated

online, such as in reinforcement learning. [88]

Rulesets are the most general kind of agent program, since a program is essen-

tially a ruleset (which may modify itself). The basic distinction in rulesets is between

rules that have decision functions and rules that constantly activate their actuators.

Policies are a subset of rulesets, since a policy is a ruleset that use a simple numeric

comparison for the decision function.

Policy (Ruleset

However, while a policy’s decision function is essentially a simple numerical

comparison, in the general case a ruleset can use a very wide range of decision func-

tions. Once the agent ruleset is defined, it is considered more or less effective based

on how well it achieves a certain objective. The ruleset used to achieve the objective

is considered the agent’s behavior. Since a behavior is described in terms of what it

accomplishes, the behavior also includes the objective. Thus, an agent’s behavior is

its ruleset and the objective the ruleset accomplishes.

25

2.5 Self Organization and Entangled Hierarchies

In order to develop MAS based security systems, it is necessary to create a

scalable, flexible control structure. However, a scalable, flexible control structure

tends to be an anachronism in computer science, as added flexibility and scaling leads

to rapidly increasing overhead. Consequently, as evidenced by the literature, research

is drawing inspiration from the many successful large scale, self organizing MASs in

nature [27] [116] [114] [115].

For instance, many stochastic global search algorithms are inspired by such

systems. Simulated annealing models how the annealing process causes the molecules

to become organized in steel, making the steel less brittle. Evolutionary algorithms

are based on the idea that the process of variation and selection in nature, whether by

environment with natural selection or by animals as with the Baldwin effect, causes

the genetic code to become more organized according to a fitness function. The ant

colony algorithm copies the capability of foraging ants to find the most efficient path

between a food source and their nest without overarching guidance.

To investigate such self organizing MASs three related, yet distinct, concepts

are discussed in this section. They are: emergence, self organization, and entangled

hierarchies. Emergence refers to things that are composed of parts, but are not

reducible to the parts and their interaction. For example, a car is composed of a

body, an engine, and four wheels. However, when we talk about cars, we use the term

“car” as if it is something other than the parts it is composed of.

There are various ways phenomena can emerge. They can emerge by accident,

by design, or by some mechanism. One form of mechanism based emergence is called

self organization. While similar in certain regards, emergence and self organization

are distinct concepts [137]. Emergence refers to a macroscopic (global) pattern being

generated from microscopic (local) interactions. Self organization is when a system

robustly sustains itself through internal local interactions and observations, without

26

the need for external or global direction. However, given that both refer to a local

dynamics to global property mapping, they are often conflated.

In a self organized system, the parts influence each other. This influence can

proceed in a strictly hierarchical manner, where the higher levels influence all sub-

sidiary levels unidirectionally. Alternatively, the influence can proceed bidirectionally.

Besides bidirectional influence, the organization may be composed of many disparate

and intermingled hierarchies. This complex form of organization, composed both of

bidirectional influence and intermingled hierarchies, is called an entangled hierarchy.

To incorporate an entangled hierarchy in a self organized system, the global level must

have a concise enough Shannon coding [118] that the local level can interact with it,

given its more limited memory space.

This is where emergence is important. A global pattern means that the global

level can be encoded more concisely than just the aggregate of the system parts. For

example, the word “example” on this paper or monitor is more concisely encoded as

a series of ASCII characters than as aggregate of the atoms or pixels (i.e. bitmap

image) in its composition. So, if global or regional behaviors in the self organized

system are emergent, then the local elements can refer to and interact with them,

within their memory limits.

2.5.1 Emerging Behavior is a Real Phenomenon. The idea of emergence

is widespread in both modern day science and philosophy. In both disciplines, the

interest is founded on the assumption that reality can be entirely based on physical

processes, therefore every science is derivative of physics. However, the reductionism

that this idea implies does not cohere with the view of many of the scientific disciplines,

who consider certain phenomena in their disciplines as not being easily or even possibly

reducible to basic physics. On first glance, this may seem to be logically invalid.

If the sciences study physical objects, and all physical objects run by the laws of

physics, then are not all objects just particles in motion, by definition? While this is

a compelling argument, there is a rigorous theoretical basis for the idea of emergence

27

based on Gödel’s incompleteness theorem [25]. However, the relevance of this insight

requires a proper understanding of reductionism.

First, it is important, as always, to define the terms being used. There are at

least 3 distinct meanings of “emergence:”

1. It is practically intractible describe an “emergent” property in terms of its lower

level structure. Notice that this says nothing about the existence of the emergent

properties. The properties may or may not really exist in this case. For example,

most people cannot describe a car in terms of its mechanisms, and instead

describe it in terms of its function. However, it is perfectly possible to describe

a car completely in terms of its mechanism without any loss of detail.

2. The “emergent” property has an existence distinct from its lower level structure.

An example of such an emergent property is the color red. Even if everyone sees

a different color when they see the wavelengths that produce the color red, we

all (for the most part) know what each other are talking about when we say

“red.” This happens despite the fact that no one’s neuro-chemical process is

composed of the same particles and the light’s photon energies and wavelengths

that produce the vision are all completely different.

Another example is DNA. The specific strand is made up of a unique set of

molecules and cells. However, the information it encodes is universal. The same

configuration means the same thing regardless of the particular material it is

made of. Thus, the information is distinct from the material and is an “emer-

gent” property. However, while this idea may be philosophically compelling

(though it is still quite controversial in the philosophical disciplines), it does not

find easy acceptance on rigorous grounds among the sciences.

3. A property cannot be produced by lower level structures that lack informa-

tion about the property, even though its existence is reducible to lower level

structures. Kolmogrov complexity [71] is one quantification of this idea, that

there are certain programs (given a computational model) that cannot be re-

28

duced to still smaller programs. A program’s Kolmogrov complexity is the

smallest program necessary for its reproduction. A familiarity with Godel’s in-

completeness theorem shows Kolmogrov complexity is a particular instantiation

of Godel’s theorem. Then, given the assumption that reality is computational,

which seems reasonable if reality is quantized and it all can be emulated on a

computer of adequate fidelity, irreducible physical phenomena is at least plausi-

ble. The benefit of definition 3 for emergence is that it does not contradict any

of the assumptions of modern science, while still giving a theoretical justification

for properties that are semantically irreducible, instead of merely syntactically

irreducible as in the case of definition 1.

Thus, with definition 3 in mind, it is possible to answer the original question

“isn’t the concept of emergence meaningless since everything is reducible to physics?”

with a “no.” Formulæ (2) and (3) describe the modality of the bidirectional rela-

tionship between emergent phenomena and physical law in the more general terms of

modal logic.

emergent phenomena→ �axiomatic system (2)

axiomatic system 6→ �emergent phenomena (3)

Emergent phenomena necessarily imply an axiomatic system, such as the laws

of physics, but the axiomatic system does not necessarily imply a particular emergent

phenomena. The emergent phenomena are, in turn, specified by information that is

latent in the physical system, analogous to the Kolmogorov complexity of a computa-

tional representation. In order for a decentralized MAS to remain organized without

resorting to centralized organization, its behavior must be emergent. Therefore, the

theory of emergence is essential for the design of a decentralized MAS.

2.5.2 Self Organization. Self organization is the essential mechanism for

producing robust emergent behavior in a MAS. A pattern is emergent if it is not

29

explicitly specified in either the swarm or the environment, and it is unlikely to

happen given a random set of parameters. External organization describes how a

MAS behavior necessarily emerges primarily due to environmental feedbock. Internal

organization, or self organization, describes how the behavior in the MAS necessarily

emerges primarily due to internal feedback.

Since internal organization does not depend on the environment, it is more

robust than external organization. Hybrid organization, of course, describes how

both sources of feedback provide equivalent organization for the swarm. However,

in all cases, no new information is being created. The information necessary for the

behavior to emerge is latent within the system, whether MAS, environment, or both,

in some way.

2.5.3 Qualifying Self Organization. To construct a self organizing swarm, it

is necessary to qualify when a swarm is self organized. If the information necessary

for a certain emergent property is latent in a system, then the question becomes

how does the emergent property emerge? A new property implies new information.

Yet, information is said to be conserved [38], and new information must come from

somewhere.

There are a number of ways patterns can be constructed. The patterns can be

explicitly constructed by a designer, such as a construction chief at a building site.

Alternatively, the pattern can be the result of an environmental template, such as a

river bed. However, in each of these cases, we do not say that the pattern is emergent,

because the pattern already exists.

In nature, there are occurrences of what are called self organizing systems. These

systems show a pattern of behavior over a long time despite the fact that there is no

overarching control of the system. For instance, ants and termites display this kind

of behavior to an amazing degree. Even though many human organizations rely on

hierarchical control, there are also organizations that operate without such control,

though this is rarer than in the insect world. The benefit of self organizing systems is

30

that they can easily adapt locally to changing environments while maintaining a global

objective. This is a very useful idea for mobile agents in a network since networks

can have a wide variety of configurations and change rapidly.

There are a number of definitions of self organization. They range from the

observable, such as that of [53] who states that self organization is the emergence

of a global, organized pattern in a system without any overarching control, through

local observations and interactions; to the measurable, such as the notion that the

statistical complexity of the system increases faster than the statistically complex

information flows into the system [101].

With these two definitions, there are two primary ways self organization can

be qualified: in terms of observable system dynamics (qualities) and in terms of a

metric (quantities). The first way is to identify whether the global pattern results

only from local observations and interactions. The second is to measure the complex

information flows. In the latter case, a quantitative metric of self organization can be

constructed and used as an algorithm heuristic. With the observational qualification

of self organization, it is possible to visually identify, and thus humanly engineer a

self organized MAS.

It is not always easy to formalize the qualities we observe, so the observational

qualification provides the most general method of qualifying self organization. In

[114] the authors present an extensive list of observational qualities that depict a self

organized system. With the self organization metric, a search algorithm can find a

self organized MAS automatically. Of course, it is essential that the metric specifies

a swarm is self organized when it can be observed to be self organized.

The modal, unidirectional relation between the two qualification methods is

specified in propositional logic form in formulæ(4) and (5).

metric qualification→ �observational qualification (4)

observational qualification 6→ �metric qualification (5)

31

The successful evaluation of the metric always implies self organization is observ-

able, but observed self organization does not necessarily imply the metric measures

the self organization. Nor does it even imply a metric is possible.

2.5.4 Quantifying Self Organization. The organizational characteristics of

the swarm can be formalized described in reference to transition function T (6). Θ

is the set of swarm states. Σ is the set of environment states. ΨΛ is a set of state

classes, Ψλ, where each class is composed of < ΘO,ΣO > tuples. The subscript I

means input and the subscript O mean output. A subset, ΨΛ×B, of ΨΛ maps to a set

of behavior classes according to functionMB (7).

T : ΘI × ΣI → ΨΛ (6)

MB : ΨΛ×B → B (7)

A behavior b in B is emergent if predicate E(b) (8) is true, and it is decentralized.

Altogether, the formula states if b contains a set of state classes that are unlikely to be

obtained given all possible transition functions, then b is emergent. Additionally, this

result can be generalized to a subset of B by considering the subset to a particular

behavior.

E(b)→ ∃ψλ∃Ψλ∃Ψ
E
Λ{ψλ ∈ Ψλ ∧Ψλ ∈ ΨE

Λ :MB(ΨE
Λ, b) ∧ PT ∗(Ψ

E
Λ) < ǫ} (8)

The function PT ∗ is a probability function based on all transition functions T ∗

that computes (ΨΛ|T ∗) where ΨΛ is some subset of ΨΛ. ǫ is a threshold that is at most

0.5. The is based on Shannon’s information theory, where the amount of information

in a behavior is the log2 of the inverse of its likelihood of occurring, or log2(
1

PT ∗(Ψb
Λ
)
).

If the information content of a behavior is normalized according to the information

in the system as a whole, consisting of the set T ∗, then any result more than unity

implies the behavior contains more information than the system can account for. If

32

PT ∗(Ψ
b
Λ) < 0.5 then the information content must be more than 1. Thus, it fulfills

the condition of “unlikely to happen given a random set of parameters.”

The other two criteria of local observation and interaction are grouped under

the qualification of being decentralized. These, in turn, can be measured by another

metric that is introduced in Section 2.5.6, which discusses entangled hierarchies. To

talk about self organization, then, is a matter of examining the relation between the

sets ΘI × ΣI and ΨΛ, and functions T and MB. If sets Θω
I and Σω

I fulfill formula

(9), then
|Θω

I |
|ΘI | ∝

1
SOm

and
|Σω

I |
|ΣI | ∝

1
EOm

. If SOm

EOm
> EOǫ then the behavior is externally

organized. If EOm

SOm
> SOǫ then the behavior is self organized. EOm and SOm are

thresholds for their respective properties.

∀θI , σI{θI ∈ Θω
I ∧ σI ∈ Σω

I : θI , σI ∈ T (Ψb
Λ) ∧ E(b)} (9)

Many scientists have developed methods of creating or measuring a particular

characteristic of self organization. For instance, a set of robots that group together

can be said to show self organization [18]. A decentralized intrusion detection system

that uses two agent populations to detect and eliminate intrusions relies upon self

organization for the populations to work together without centralized control [45].

Robots that evolve specific, global behaviors are self organizing as well [18]. An

evolving modular robot that reduces the entropy in its behavior also exhibits self

organization [102].

Other researchers have developed more general metrics for self organization

that can be applied to a general class of problems, or ways of characterizing the

conditions for self organization. [29] lists and relates the general characteristics of self

organization. [140] describes a set of conditions that lead to emergence, one essential

characteristic of self organization. A few general quantifications of self organization

have been developed by [34, 117]. The authors of [101] presents a good overview of

different self organization quantification techniques applied to selected problems. Out

33

of the quantitative techniques, the predictive information metric is the most general

of the set, and is fairly straightforward to implement. The essential idea is that as the

number of chronological sequences (l−) that can be used to predict future sequences

(l+) in a history increases, then the system is developing more structure, and hence

becoming more organized.

I[x; y] = P (x, y) log2

P (x, y)

P (x)P (y)
(10)

Once a system’s history is obtained, the sets L− and L+ are extracted and

I[l+; l−] is calculated for each element, resulting in a measurement of systemic orga-

nization. If the metric is used on sub sequences of the history, then the increase in

organization can be measured.

It is important to note that the metric is opposed to both random and trivial

histories. If a history is random, that means any given l− and l+ are equally likely

to occur together and P (x, y) = P (x)P (y). On the other hand, if a history is trivial,

then the sets L− and L+ are minimal, again resulting in P (x, y) = P (x)P (y). As

long as P (x, y) = P (x)P (y) then Equation (10) produces a zero value. Thus, once

the metric gives a positive reading, the history contains organization.

A causal state is a probability distribution over future sequences. For each

causal state there exists a set of pasts that each have the same causal state. With the

use of the ǫ statistics, which is the minimal sufficient statistic for a causal state [117],

Equation (10) can be simplified to Equation (11). This Equation states that the

amount of predictive information is, per Shannon’s information theory [118], the log2

of the number of causal states.

I[L+;L−] = log2 |ǫ| (11)

While the metric measures the amount of organization, this still does not spec-

ify whether the organization is created, emergent, or self organized. In the case of

34

SOMAS, emergence can be assumed, since an organization is not pre-built into the

swarm and the swarm generates its behaviors through local observation and interac-

tion. Whether the emergent structure is self organized or not depends on the amount

of interaction within the swarm, which can be characterized by whether it exhibits

an entangled hierarchy.

2.5.5 Constructing Self Organization. Besides qualifying whether a given

system is self organized, it is possible to create systems that exhibit self organization

through certain rulesets. These rulesets tend to be developed through observing

existing self organized systems in nature. For example, a well accepted situation

where we say a pattern is emergent is in the case of foraging ants. The ants execute

very simple rules only with reference to their local situation, yet they are able to

accomplish global behaviors such as foraging and routing.

Within such a system there are 3 main principles at work: positive feedback,

negative feedback, and information transfer. For example, the positive feedback is

the path reinforcement when ants relay new pheromones on existing pheromones

when a good path is discovered. The negative feedback does not really exist in the

ant system, except in pheromone decay and random exploration, but an example of

such feedback is in the stock market where too many investors in a stock dilutes its

value, eventually leading to a decrease in investors. Finally, information transfer is

apparent in the ant system’s use of pheromones. These three elements of negative

and positive feedback, and information transfer, are generalized from a wide variety

of self organized biological systems in [29].

2.5.6 Entangled Hierarchy. In multi-agent systems, both human, mechan-

ical, and computational, effective behavior depends on using both global and local

information. However, usually the individual agents cannot observe all the informa-

tion they need. Consequently, the information must be communicated from those that

have it to those that need it. With small networks, this can be achieved effectively

and efficiently by all to all broadcast, multicast, or pointcast. However, as networks

35

grow in size, such communication schemes grow in overhead at an exponential rate.

Even the number of hierarchies itself has an upper limit. Humans can generally han-

dle between 3 and 7 unique items in their mind at once. Any more than this and

they’ll start becoming confused and making mistakes. Thus, an increase in hierarchy

generates its own overhead, and beyond about 3 or 4 levels the point of diminishing

returns is reached.

Consequently, there is an effective limit on the size a hierarchical structure can

grow, and thus the size of a network. Of course, computers can process much more

data in a given period of time than humans, so the hierarchical limit of computational

networks is many magnitudes greater. But, there is also a limit to the size of com-

putational networks that are based on hierarchies. Some use a more flattened system

to avoid the inefficiencies of hierarchies. Beyond a certain size, the individual agents

cannot establish a good global perspective, and such systems become direction-less.

Alternatively, sometimes hierarchies can overlap, and two global perspectives com-

bine. This can work if the perspectives are compatible, but often their goals conflict,

again leading to lack of direction at the lower layers.

The communication problem can be characterized by routing the right infor-

mation to the right agent at the right time. There are many different methods of

routing this information, some more or less efficient. The goal is to produce the most

efficient routing, and as such the problem becomes a minimization problem. Using

a hierarchy is one effective heuristic for creating an efficient routing scheme. But,

it is inherently inefficient in certain ways since it predetermines that communication

with at least half the network proceeds indirectly. Unless communication structures

fit such a structure exactly, the indirection always leads to inefficiency.

A second, more general inefficiency with communication, which does not depend

on whether it is hierarchical or not, is the use of information packets. If the packets

are only sent point to point, then either certain nodes do not receive all the infor-

mation they need directly, or the sender must do a lot of bookkeeping to ensure all

36

recipients get exactly what they need. Additionally, the latter case presupposes the

sender has an adequate global view to know what information each recipient needs.

Neither is this approach easily scalable. Yet, if multicast or broadcast is used, then

often recipients receive redundant information. Essentially, the communication and

information structure needs to be an emergent property of the communication itself,

since any kind of external control presupposes a certain communication routing.

If the measure of a resources is the cost of its use, then the pairing of tuples to

resources results in the resources’ costs being respectively scaled according to their

tuples’ commonality in the actual communication structure. Summing the total re-

source cost for the routing scheme gives a measure of its optimality. The optimal

routing scheme minimizes the resource cost. A symbolic formalization of this dis-

cussion is found in Formulæ (12-14). Where Ψ is a set of tuples relating route and

information. < Route, Info >, P is a set of probabilities, abiding by the standard

properties of probability sets. R is a set of resources. C is a set of costs.

p : Ψ→ P (12)

s : Ψ×R → C (13)

m : Ψ×R → {0, 1} (14)

Formulæ (15-16) detail the nature of efficiently coded and inefficiently coded

communication. For a given mα, te is the threshold of
|M≥|
|M | above which mα is con-

sidered an efficient coding and t6e is the threshold of inefficient coding.

c(m) =
∑

ψ∈Ψ

∑

r∈R
m(ψ, r)× p(ψ)× s(ψ, r) (15)

∀m{m ∈M≥ ↔ m ∈M ∧ c(m) ≥ c(mα)} (16)

In general, the efficient communication scheme is called an entangled hierarchy.

This is because the information sharing covers the whole range of pointcast, multi-

37

cast, and broadcast, but not according to any general principle, only according to

the actual information needs. Additionally, the data gathering and decision making

communication does not proceed in only one direction, but both types of communi-

cation can proceed in both directions between any given recipient and sender. Thus,

the communication routing structure can range from being completely flat to being

a strict hierarchy. The optimal structure likely falls midway between the extremes,

exhibiting a number of different interrelated hierarchies.

The stock market is a concrete example of both the phenomena of an entangled

hierarchy, and its attendant difficulties. The stock market is an emergent aspect of

worldwide trading. At the same time, investors interacting with the stock market

influences the individual companies that are engaged in this trading. Thus, both the

highest level in this hierarchy emerges from and is dependent on the lowest levels, while

it also influences the lowest levels. However, if not pursued with care, an entangled

hierarchy can become unstable.

An entangled hierarchy supported by the trusted system of CyberCraft pro-

vides the crucial resilient flexibility necessary to adapt to the constant changes of

Cyberspace. At the same time, the example of the stock market shows the promise

of entangled hierarchies must be met with caution. A communication structure is not

self aware, and there must always be a human in the loop to help ensure stability.

Entangled Hierarchy vs Power Law Hierarchy: The internet is built based on a

power law distribution [119], such that the number of hops between any two arbitrary

nodes scales logarithmically with the number of network nodes. This is a very useful

network design if the nodes’ dependability increases with their link degree, and if the

network topology is fairly static. However, if this characteristic cannot be guaranteed,

then a communication structure based on the power law distribution is not necessar-

ily beneficial. In such a case, the more general concept of a specialized entangled

hierarchy may work better.

38

Figure 1: Normal hierarchy vs entangled hierarchy

2.5.7 Quantifying Entangledness. While self organization means that the

swarm develops a consistent structure of behavior, an entangled hierarchy means

that the structure exhibits hierarchical relationships between the different parts (such

that certain parts exert more influence over the swarm’s behavior than that of the

influenced parts). The causal relationships do not only procceed in one direction in

the hierarchy. An example comparing a normal hierarchy to an entangled hierarchy

is shown in Figure 1.

The benefit of an entangled hierarchy is that it is a higher level abstraction that

encompasses all the standard communication structures. There are two extremes to

a communication structure: completely flat or completely hierarchical. In turn, there

are 2 metrics that distinguish these extremes. They are influence ordering and causal

relationship. An influence ordering means that there is a ordering of more influential

to less infuential amongst the parts being measured. The causal relationship shows

the direction of influence. In a hierarchy, the parts have a strong influence ordering

and unidirectional causal relationships. Whereas, a flat communication structure

has a weak influence ordering and bidirectional causal relationships. However, in an

entangled hierarchy, the parts both have a strong influence ordering as well as bicausal

relationships.

39

The entangled hierarchy can be measured as a multiobjective problem, detailed

in the following equations. While these objectives do not exhaust the concept of an

entangled hierarchy, they imply an entangled hierarchy.

min(argmaxrank(|rank|)) (17)

max(argminv∈V(|v’s unique cycles|)) (18)

Where rank is a given influence rank. C is a set of cycles. V is the set of vertices

in the influence graph.

Minimizing equation (17) creates influence stratification amongst the vertices of

the influence graph. In equation (18), a unique cycle is a cycle that v is in such that

there is another cycle v is in where none of the other vertices in the second cycle are

in the first cycle. Maximising this objective creates complex bidirectional causality.

2.5.8 Intelligence Augmentation. Intelligence augmentation (IA) is the

study of the mutual interaction between man and machine for the ultimate bene-

fit of man’s intelligence. As exhibited by arguments such as Godel’s incompleteness

theorem [74], Searle’s Chinese room argument [112], qualia [130], and other theoretical

concepts, it is not very likely that true AI is logically possible.

However, these same arguments provide an important insight into the more

useful direction for computer research, which is intelligence augmentation. Godel’s

work, in particular, highlights the specific ability that humans have, which is self

formalization. This means that humans can identify a process they are performing

and then formalize its syntax. Since all computer programs are state machines, they

cannot represent themselves. Therefore, computer programs cannot self formalize like

humans can. At the same time, computers are very good at running state machines,

and humans are not. This suggests that the best interaction between computers and

humans should allow humans to easily define a state machine for a given problem,

40

Table 2: Information source mapped to search

Local Solution Space Global Solution Space

Local Population Deterministic EA
Global Population EA EA

which the computer would then maximize and feed the results back to the human as

a new problem.

Similar to our interaction with our body and the environment, this process gives

rise to emergent properties, providing the human with new directions for investiga-

tion. This interaction between human and computer is called intelligence augmen-

tation, since a human is using a computer to augment their intellect instead of as a

replacement for their intellect.

Self organization is incorporated into the discipline of IA through the notion

of controlled self organization [27]. The essential idea is to use self organization to

give humans control of the system. This is one possible way to deal with the issue of

instability in self organized systems.

2.6 Search Algorithm

A better search for a domain encodes more information relevant to the search

domain. There are two sources this information can come from: before the search

(offline) and during the search (online). During the search, there are also two sources

of information: the list of partial solutions and the solution space. These sources of

information can either be local or global.

The rating of a source before the search is based on the calculation of expected

active information P (T ∈ S|IE)∗IA. P (T ∈ S) is the probability of the target being in

the search space given IE, the exogenous information. IA is the active information [38].

The online sources of information can be combined with both the offline sources and

other online sources. Table 2 describes how the source of information and the locality

of the solution space that can be sampled specifies the kind of search algorithm.

41

The neighborhood to solution hyperarch denotes the search space and the offline

source places a probability distribution on the search space. In a search operation,

characterized as the modus polens rule ∃P∃Q{P → Q : P ∈ SPart, Q ∈ SSrch},

the selected partial solutions are the antecedent P and the selected solution space

solutions are Q. SPart and SSrch can both be populated by searches as well, nested to

an arbitrary depth.

The distinction between deterministic and stochastic search is the straightfor-

ward observation that given P → Q ⊢ Q ∈ Q′, Q = Q′ in the case of deterministic

search and Q ⊂ Q′ in the case of stochastic search. For an arbitrary domain, the

baseline search is the Monte Carlo sampling [138]. This is the baseline since any

solution is just as likely to be picked as any other solution. Any search that per-

forms statistically worse or better than the blind search has information about the

search domain, regardless of whether that information is accurate or inaccurate [38].

The likelihood that an informed search finds a solution compared with the random

search’s likelihood provides a precise quantification of the information the search en-

codes regarding the search domain. This quantification allows an accurate (though

not necessarily precise), and implementation invariant, comparison between search

algorithms.

There are a large number of ways of formalizing search domains. The algorithm

chosen is primarily dependent on the complexity of the search domain. If the solution

can be decomposed into a partial solution search, then a search based on local infor-

mation is likely appropriate. This method of searching is generally used for solutions

that can be found in polynomial time.

On the other hand, in very complex search domains, there are many local op-

tima, and both global and local information is needed to find the optimal solution.

Additionally, in large search domains, it is usually necessary to use an approxima-

tion search instead of an exact search. Approximation searches are good at finding

solutions in polynomial time, and they often provide good enough approximations.

42

Table 3: Algorithms mapped to fitness landscape characteristics

Hilly Craggy

Smooth Tabu search Evolutionary strategies
Rough Simulated annealing Evolutionary algorithm

Approximation searches are either deterministic or stochastic. The benefit of

stochastic search, such as simulated annealing or EAs, is that it avoids getting trapped

in local optima without the need for storing previously visited solutions. Due to the

law of large numbers [5], if the probability the stochastic search algorithm finds the

optimal solution is greater than zero, then it finds the optimal solution as the number

of sampled solutions approaches infinity. To achieve the same result, deterministic

searches must store their entire search history in some form in order to guarantee that

the optimal solution is found. For a detailed description of a number of stochastic

global search algorithms please see [82].

Selecting a good global search algorithm requires information about the fitness

landscape. Such knowledge can come in a general form, such as knowing how rugged

the landscape and how smooth the slopes are. For example, the smoother the slopes

are and the fewer the number of slopes, then the more useful a hill climbing algorithm,

i.e. local information search, is. A very rugged landscape can trap searches in local

optima, so such landscapes should be searched using some form of global solution

sampling [82].

2.6.1 Fitness Landscape Characteristics. Mountainous means the landscape

has a lot of optima that vary greatly from the optimal in magnitude. Hilly means

there are not many optima that vary greatly in magnitude. Smooth means the slopes

that lead to the optima can be climbed fairly easily by a backtracking hill climber

with a small amount of memory. Rough means a large amount of memory is necessary

to find the optima.

2.6.2 Evolutionary Algorithm Packages.

43

• GALib [132]: GALib is a genetic algorithm library written in C. It is quite

computationally fast, and is fairly popular. However, since it is written in

C, its design is not loosely coupled, and can be unwieldy. It does not have

support for parallelization. A major disadvantage of the package is that it is

only a single objective genetic algorithm framework. The SOMAS domain is

best expressed as a multi-objective problem. To evolve solutions in the SOMAS

problem domain using GALib, it is necessary to use some kind of scalarization

of the objective vector. This likely loses too much important information.

• Swarmfare [100]: The existing evolutionary algorithms are good, such as the self

organizing genetic algorithm that uses entropy to perform differential evolution.

The framework does not provide a lot of flexibility for the implementation of new

algorithms. Specifically, much of the problem domain information is hardcoded

into the algorithm, and it requires a significant amount of software engineering

to make it loosely coupled enough to evolve solutions for other problem domains.

For instance, the chromosome and gene sizes are a set length. The chromosome

is directly tied to the phenotype level, which is the UAV platform.

Swarmfare does have an inbuilt parallelization capability. It is a farming model

that uses a master slave structure. The slaves are initialized on all the nodes and

then request functions to evaluate from the master. Swarmfare also has an ex-

tensive GUI. The GUI makes it simple to understand how to use the framework,

reducing the learning curve. The scenarios are configured by using external text

files, so many different scenarios can easily be generated and tested. The sim-

ulator comes with visualization capabilities. The simulation elements consist

of UAVs, obstacles (lines), and enemy targets. The UAVs can be programmed

with a variety of behaviors.

• ECJ [76]: ECJ is a widely used general evolutionary computation package writ-

ten in Java. It has been improved over a great many years, which comes with

advantages and disadvantages. The main advantage is that the package has

been software engineered extensively so it is fairly straightforward to develop

44

complex algorithmic workflows. However, since the package has existed for so

many years, there are legacy aspects that convolute the code, but are kept to

preserve backwards compatibility.

There are a wide variety of evolutionary algorithm types that are already sup-

ported. All the standard representations and operators for genetic algorithms,

genetic programming, and evolutionary strategies are contained in the pack-

age, such as bit strings, real vectors, and programmatic trees. Additionally,

the package design pattern is based on the concept of Linux pipes, such that

processing elements send their output to other processing elements. With these

pieces, complex algorithmic graphs can be built.

ECJ is built with parallelization in mind, and can be parallelized using a number

of different job distribution techniques. It can handle both farming and island

approaches. That is, either distributing only the fitness function evaluation or

also the solution variation and selection.

• Open BEAGLE [47]: Open Beagle is a evolutionary computation framework

written in C++. Its object oriented design means, as with ECJ, it is easy

to extend. Additionally, the framework can handle multi-objective evolution.

Open Beagle contains the standard representations and operators for genetic

algorithms and evolutionary strategies. Once the user specifies the objective

function and the chromosome type minimal code is required to combine the rest

of the package elements into an evolutionary algorithm.

Open Beagle has a distributed computing library called Distributed BEAGLE.

However, it is not actively developed. The latest release is 2004.

• GEATbx [99]: GEATbx is an extensive EA library written in MATLAB. MAT-

LAB is not object oriented, so the design of GEATbx is not as easily extensible

as Open BEAGLE and ECJ. Since it is in MATLAB, it has the most useful

analysis and visualization toolset out of all the researched libraries. MATLAB

can also run its code distributed on a grid, so GEATbx can be parallelized.

45

GEATbx has two significant disadvantages. The first is that the fact MATLAB

is closed source means it is hard to have MATLAB programs interoperate with

external programs. If all development and testing is to be done within MAT-

LAB, this is not such a big problem. But, since MATLAB does not provide a

package that meets the simulation needs, none MATLAB programs are a neces-

sity. The second disadvantage is GEATbx has been commercialized and is now

closed source. While the interfaces it provides are adequate for most needs, it

is risky to assume they meet all needs. Waiting for the library to be extended,

if it is, can cost a lot of time.

2.6.3 Algorithmic Complexity. There are two aspects to algorithmic com-

plexity: time and space. An algorithm’s complexity can be measured according to

the amount of each it takes. Algorithm classes become progressively more complex,

as shown by the following set relations [9]

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

These classes are defined as:

• P =
⋃

k∈N

DTIME
(

nk
)

• NP =
⋃

k∈N

NTIME
(

nk
)

• PSPACE =
⋃

k∈N

SPACE
(

nk
)

• EXPTIME =
⋃

k∈N

DTIME
(

2n
k

)

• EXPSPACE =
⋃

k∈N

SPACE
(

nk
)

Where DTIME signifies the amount of time to solve using a deterministic Tur-

ing machine. NTIME signifies the amount of time to solve using a non deterministic

Turing machine. SPACE signifies the amount of space used, regardless of whether

the Turing machine is deterministic or non deterministic, since the difference does not

affect the power of the complexity class.

46

2.7 Simulation Packages

2.7.1 Network. The network simulation requirements for the SOMAS frame-

work are very simple. Essentially, the simulator needs to contain nodes and edges.

The impact of issues such as protocol stacks and bandwidth and latency are not dealt

with in this study.

• OpNet [7]: OpNet is a widely used commercial package for network simulation

work. It is used for many production applications and provides the greatest

realism out of all the packages. However, since it is commercial, modification

to the simulation is very limited. Additionally, it does not provide host level

simulation. It only simulates the traffic flows between hosts. Consequently, it is

not applicable for the SOMAS simulation since the simulation requires running

new code on the hosts. It may be used in tandem with another simulation to

provide realistic traffic conditions.

• NS2 [6]: NS2 is used to simulate networks. The ruleset and basic framework

are hardcoded in C++, and the runtime behavior is manipulated by Tcl scripts.

One the benefit of using NS2 is the scalability of the model’s realism is already

provided. More or less of the network stack can be incorporated, and more

realistic settings can be placed on the edges.

A benefit of using NS2 over packages like OpNet is that NS2 provides host level

simulation as well as traffic simulation, and the code is completely open source.

Thus, it can be used for the complete simulation of a scenario, and adjusted to

meet the study’s specific needs. JNS is the Java port of NS2. Consequently, it

is an ideal candidate for improving the realism of the SOMAS simulation, if it

is written in Java.

• Custom: Since the basic simulation requirements to develop the SOMAS frame-

work are very simple, it is quickest to create a custom built network simulator.

By using an object oriented language to write the network simulator, it is pos-

sible to attach an existing, and much more indepth package once the SOMAS

47

framework is complete. This is the approach that is used, due to the simple

simulation requirements.

2.7.2 Misc.

• JGraphT [85]: JGraphT provides a standard set of graph algorithms. It is

useful for manipulating the network graph in the custom simulation.

2.7.3 Multi-Agent System.

• Swarmfare [100]: Swarmfare is the in house framework for developing swarms

with emergent behavior. Currently, much of it is hardcoded (simulation parame-

ters are values instead of variables) for UAVs, which are different than software

agents in a number of important ways. The main sections that need to be

reimplemented are the behavior set, the simulation, and the visualization/GUI.

The advantage of a custom created framework like Swarmfare is that it can

be fine tuned for speed. This is important for the problem domain, since the

simulations can become very complex and time consuming when there are a large

number of nodes and agents. Unfortunately, the framework is too hardcoded

and different from the SOMAS problem domain. It cannot be easily converted

over, or at least not more easily than building a new application out of other

packages.

• SWARM [49]: SWARM is the precursor to MASON. It is written in C++.

Consequently, it is likely faster than MASON, but it is more unwieldy due to

C++ being a more difficult language to use than Java.

• MASON [75]: MASON is an open source Java package for simulating multi-

agent systems based on the C++ SWARM package, and is very fast. It can also

exploit thread level parallelization, by running the different simulation compo-

nents within different threads and on different cores. To prevent the loss of data

48

due to an unforeseen exceptions, it can also log the simulation and resume from

the results of a log file.

2.8 Visualization

The topic of visualization covers two main areas of the framework: allowing a

human to interact with the online swarm and evaluating the results of producing a

swarm offline. There are many overlapping concerns between the two areas, though

the online visualization also has a time and resource concern.

There are two aspects to the visualization. One aspect is to directly observe

the agents’ behavior on the network. The other aspect is to observe different mea-

surements on the agent swarm. Measurements can consist of many dimensions, so

some form of dimensional reduction is necessary. Most importantly, the measurement

visualization needs to visualize the key metrics of self organization and tangled hier-

archy. If the visualization of the metrics is paired with the direct visualization of the

swarm behavior on the network, then it is possible to visually confirm whether the

metrics are correct. Additionally, the data from the metrics can be superimposed on

the direct simulation to bring out non-obvious or invisible details.

2.8.1 Self Organization Visualization. It is important to be able to visualize

the self organized aspect of the system in order to allow effective human interaction.

The best result is if the self organized aspects of the system can be tied to the

objectives, so that a person can also specify new SO patterns to further achieve the

objectives. There are not many researchers who have a technique for visualizing self

organization. This is because there is no consensus on a quantitative way to identify

self organization.

Some authors [117] have developed a a visualization technique based on their

self organization metric. The idea is essentially to darken the more influential parts

of a system and lighten the less influential. When this is done, the structure of the

system’s organization is evident. The viewer can visually identify whether the authors’

49

self organization metric corresponds with a system that appears to be organized. One

visualization looks at the chronology of a self organized system, showing the impact

of each causal state on the future. Another visualization takes a snapshot, showing

the influence of each part.

2.8.2 SOMAS Visualisation. The criteria for choosing a visualization pack-

age are

• integration with existing languages and packages

• ability to take screenshots and record video

• customizable graphics

• automatic network layout generator

• graphing ability (i.e. bar charts, scatterplots, etc.)

• customizable visualization aspect This item means that the visualization is not

restricted to a certain set of data, but can be customized to whatever data is

appropriate

• MASON [75]: Besides the simulation capabilities, MASON also offers a very

general visualization API with many pre-constructed visualization techniques,

such as 2D, 3D, networks, etc. The visualization runs in a steppable real time

visualizer along with the ability to export the visualization as screenshots or

movies. The interface itself is also highly customizable and includes the ability

to inspect the simulation through the visualization, for example selecting an

agent to examine its variable values.

• JUNG [92]: JUNG is a network visualization package. It specializes in network

layout algorithms, and includes graph generators and basic graph algorithms.

Combined with MASON, JUNG provides very nice looking network layouts.

JUNG also gives the user the ability to interact with the graphs and create

50

their own layouts. With SOMAS, JUNG’s interaction capability means users

can custom design their own scenarios.

• Swarmfare [100]: Swarmfare has a very nice GUI, which includes both an inter-

face for setting the algorithm parameters and an ability to visualize the evolved

parameters. However, the GUI is hardcoded for UAV simulation, making it

difficult to adapt to the task of SOMAS simulation.

• OpNet [7]: While OpNet is one of the standard commercial network simulators,

and consequently has excellent visualization capabilities, it does not have the

ability to visualize host level behavior, which is necessary to completely visualize

the SOMAS simulation.

• NS2 [6] and JNS [131]: These network simulators can simulate at both the

network and host level, so they also have the ability to visualize the simulations.

The simulators are not purpose built for agent simulation, so it requires more

overhead to construct the visualization than with MASON.

2.9 Testing

Testing requires the ability to process data into an analyzable format, and the

statistical tests necessary to test the hypotheses. While both parametric and non

parametric tests are useful, non parametric tests are the most general type, and a

testing package should have at least these. According to [83] about 30 experiments are

required in order to produce statistically significant results. However, in some cases,

running an experiment is too time intensive. In this case, as long as the confidence

boundaries of the results for the different algorithms do not overlap, statistically

significant results are still produced.

To test comparisons between algorithms, it is important to first determine

whether the results follow the normal distribution. If they do, then a p test can

be used. If the results do not, then a non parametric test must be used. In this

project, since the distribution is not known, non parametric tests are used. The tests

51

are the Fisher exact test and the Mann-Whitney test (also known as the Wilcoxon

rank-sum test). Both tests assume the runs are independent.

Besides the statistical tests, the testing framework also needs the ability to com-

pare multi-dimensional solutions. This is either accomplished through turning the

vector of objectives into a scalar using weights or some other metric, with augmen-

tation, or by comparing the vectors directly. It is difficult to scalarize the objectives

since the weights are not always known beforehand. Comparing the vectors directly

is a more flexible technique.

The direct comparison usually takes the form of establishing the Pareto front of

the solution set, and then comparing a metric based on the Pareto front. Since fronts

do not usually have the same number of points, it isn’t possible to use a standard

dominance ranking. The metric used should also be Pareto compliant, meaning it

does not order a dominant front as worse than a non-dominant front [36].

Ideally, the tests should achieve the true Pareto front, PFTrue. However, this

requires a great deal of computational power, and thus only an approximation is likely

to be achieved. Consequently, it is also important to be able to determine general

characteristics of PFTrue, so as to understand its general shape, how difficult it is

to find the different sections, and the overall sparsity. These characteristics help the

decision maker know the constraints on his or her decision making in this problem

domain. However, the search landscape to objective landscape mapping function does

not necessarily have an inverse function. Thus, a pattern on the objective landscape

does not imply a pattern on the search landscape.

• PISA [24]: Zitzler’s PISA framework [24] is a comprehensive multi-objective

development and testing framework. The testing framework consists of a vari-

ator and a selector. The variator contains the fitness function, the solution

representation, and the solution variation operators. The selector contains the

population ranking and selection operators.

52

Along with these two parts there is also a number of MOEA and statistical

metrics that are used to test the hypothesis that one algorithm is more effective

than another for a given problem domain. It is simple to add a number of

scenarios, variators, and selectors, and then have them automatically tested

once the algorithm is complete.

The framework is very general, thus each variator and selector only needs to

abide by a simple state machine protocol and file format in order to work to-

gether. This allows the user to employ the many selector algorithms available

on the PISA site. Additionally, the source code for elements of the framework

is generally avaliable, except for one or two exceptions. So, the user has many

MOEA templates available to quickly bootstrap their own algorithms without

concerning themselves with implementing the required interfaces.

The tests make use of standard Pareto compliant metrics to compare Pareto

fronts. This means that while the framework is originally meant to support

the comparison of different selectors, it can be changed to compare variators,

which includes the comparison of evaluation functions. This change consists

of switching the position of the variators and selectors in the command line

arguments for the run script.

The indicator suite also contains estimated attainment functions, which, besides

testing, are useful for visualizing where the EA tends to search in the solution

space. However, they only work with 2 objective spaces. Even if the objective

space for a chromosome contains more than 2 objectives, a pairwise selection of

objectives can be used to reduce the objective space for attainment visualization.

The objective space can also be reduced by finding linear relationships between

objectives, and thus substituting a single objective for related objectives.

2.9.1 MOEA Metrics. In order to determine the comparative effectiveness

of different swarms in a scenario, their respective PFknown must be compared. The

53

metrics for this comparison should be Pareto compliant [36], in order to have a fair

comparison of effectiveness.

Pareto compliance means that the metric, I : Ω → R, is an order preserving

function from (Ω,�) to (R,≥), as detailed in formula (19). If the metric is not Pareto

compliant, then it may rank a dominated front higher than the dominating front.

∀A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B) (19)

! It is important to keep in mind that these metrics are different than the

scenario metrics. The scenario metrics measure the online search algorithm

effectiveness and the Pareto compliant metrics measure the offline search

algorithm effectiveness.

As an example, the following list shows a range of Pareto compliant metrics

from [36].

• error ratio

• hyperarea or hypervolume ratio

• epsilon (ǫ) metric

• R1,2,3 metrics

The PISA framework contains three Pareto compliant metrics: the R2, ǫ, and

hypervolume metrics. These metrics are used in the PISA framework because while

each is Pareto compliant, they also measure the dominance of fronts in a different way.

The ǫ and R2 metrics are good for comparing relative dominance of fronts, where the

ǫ is more affected by outliers and the R metrics less so. The hypervolume ratio gives

an absolute measure related to the theoretical optimal, the objective space origin

(for many problems this is an unobtainable goal, thus it is not necessarily the real

optimal). These characteristics are discussed in more detail in the following sections.

Epsilon Metric: The Epsilon (ǫ) metric is the minimum ǫ ∈ R value such that

any solution b ∈ B is ǫ-dominated by some solution a ∈ A. This is detailed by

54

Equation (20) [36].

Iǫ(A,B) = min ǫ ∈ R|∀b ∈ B∃a ∈ A : a >ǫ b (20)

Where a >ǫ b means that a ǫ-dominates b.

The ǫ metric is good for measuring the relative difference between two attain-

ment sets, since it does not require the use of any reference points not in the sets,

i.e. the sets are measured against each other directly. However, the ǫ-metric is signif-

icantly affected by outliers.

For example, the majority of the vectors in an attainment set, A, may dominate

the vectors of attainment set, B. B also contains one or two vectors that significantly

dominate vectors in B. Thus, B needs a smaller ǫ value to dominate A, even though

A mostly dominates B.

R2 metric: The R2 metric is the average difference between the utility values of

a reference set and the approximation set, such that utility is measured by a utility

function and a set of vectors used for scaling. See Equation (21) [36].

IR2 =

∑

λ̃∈A u(λ̃, B)− u(λ̃, A)

|λ̃|
(21)

Where u(A, λ̃) is the utility of approximation set A, on a scalarized vector, λ̃ (a

reference point).

The utility is measured by the minimum distance of a point in the set, A, from

the reference point. With a large number of reference points, the R2 metric is a

good metric for determining the general attainment of an attainment set. Unlike the

ǫ-metric, it is not significantly affected by outliers.

By using both metrics, it is possible to identify greater exploration, such that

an attainment has a few remarkably good solutions compared to another attainment.

Greater exploration is indicated when the R2 and ǫ metrics give contrary rankings for

55

two attainment sets. If the difference is big enough, then the data may also contain

anomalies.

Hypervolume Metric: The Hypervolume metric is the volume of the minimum

values for each objective in the approximation set. This is detailed in Equation

(22) [36].

ME ,

{

⋃

i

voli|veci ∈ PFknown

}

(22)

This metric tells the user how close an attainment set is to the theoretic optimal.

In this sense, it is more objective than the previous two metrics. Although, the

hypervolume says little about the optimality of the individual points compared to

the previous two indicators, since it only can compare the best objectives out of the

complete set of points.

2.9.2 Statistical Analysis. The Fisher sign test is not accurate for more than

2 samples, while the Mann-Whitney test is. Since the experiments for this research

usually have more than 2 samples, the Fisher sign test is not accurate in such cases.

However, it is still used for exploratory purposes. This is because the run count

for both statistical tests, which is five runs per scenario, is not sufficient to obtain

accurate results, which requires 20 runs per scenario. The smaller run count is used

because of time constraints.

Fisher sign test [133]: The Fisher sign test calculates the p-value that two

distributions are different based solely on the “signs of the differences between paired

observations, not on their sizes.” The sample sizes of this test must be the same size.

It is accurate for a comparison between two samples, but is inaccurate for more than

two samples.

The inaccuracy results from the fact that multiple statistical tests are being run

on the same samples, thus the tests are not independent. In such a case, it is necessary

to give an idea of how likely at least one null hypothesis is incorrectly rejected, i.e. a

56

Type I error. In the case of tests that are not independent, the lower bound of this

error is given by a′ in Equation (23) [83].

a′ = 1− (1− a)n (23)

Where n =

N

2

, and N is the number of samples.

For example, if N = 3 and a = 0.05, then a′ = 0.14. So, there is at least a 0.14

chance that at least one null hypothesis is incorrectly rejected.

Mann-Whitney (Wilcoxon rank-sum) test [83]: The Mann-Whitney test com-

pares the deviation between the medians of two samples, which may have different

sizes. The statistic is calculated by ranking the members of the samples against each

other, and adding up the ranks of the smaller sample to produce Wm. The p-value is

derived from the range that Wm falls within. The benefit of the Mann-Whitney test

is that it can accurately be used on more than two samples, in which case it is more

commonly known as the Kruskal-Wallis test.

2.9.3 Visual Data Processing. The visual data processing requirements are

fairly simple. First, since each scenario outputs more than 3 objectives, plotting the

known Pareto front, PFknown, requires dimensional reduction, which can simple be

selecting only 3 objectives at a time to plot. Second, the plots need to be capable of

incorporating LATEX markup and be publication quality. There are many very powerful

data process packages in existence, but these simple requirements only require the

use of Bash and GnuPlot. Besides the data processing for the experiment results,

the SOMAS framework requires a clustering algorithm and basic statistical functions.

The Weka library provides the clustering algorithm and the Colt library provides the

statistical functions.

• Bash: Bash is a useful all around scripting language. It is one of the standard

scripting languages used in the Linux OS. With the UNIX philosophy of tool

57

chains Bash is an effective glue language. Since the SOMAS framework is com-

posed of a number of disparate packages, glue code is necessary, and Bash is

ideal for this task.

• GnuPlot [135]: GnuPlot is an open source plotting tool. It is a flexible graphing

program that can create publication quality graphs. Its graphs can also be inte-

grated with LATEX, allowing the use of LATEX directives to create mathematical

formulae and nicely formatted text in the graph.

• Weka [46]: Weka provides a very wide range of machine learing algorithms and

techniques, along with an integrated development environment (IDE) and grid

computing capabilities.

• Colt [57]: Colt is a high performance math library that is used by the Eu-

ropean Organization for Nuclear Research (CERN). It provides many of stan-

dard mathematical and statistical functions necessary for scientific work. Even

though there is significant overlap between the Colt library and the Java math

library, the Colt functions have all been heavily optimized.

• R [60]: R is a standard statistical analysis language. Unlike related packages

such as MATLAB and Octave, its language is both object oriented and based

on functional languages such as Scheme, making it quite flexible and powerful.

Additionally, its speed is comparable to that of MATLAB. Like MATLAB, it

has a very large range of libraries, though they are focussed more on statistical

operations than matrix operations. Since it is open source, it is also possible

to add new functionality to R if needed. Unfortunately, there is not as much

documentation for R as there is for MATLAB.

• MATLAB [78]: MATLAB is one of the most popular data analysis applications.

It is especially good for analyzing matrix based data, and its code is dramatically

sped up when properly vectorized. It also has a large number of commercially

developed libraries covering a wide range of applications as well as extensive and

well written documentation. Unfortunately, MATLAB is a commercial program,

58

Table 4: Language hierarchy

Level Examples Properties Use case

0 machine code, byte code direct hardware manipulation, writing drivers
precision, unreadable

1 assembly precision, readable speed critical
2 c structured, imperative, speed essential,

FORTRAN procedural programming, legacy
manual memory management

3 lisp, c++, java, prolog object oriented, functional, speed important,
declarative programming; large scale,
static and dynamic aspects; framework design
garbage collection

4 python, ruby, perl, hybrid, completely dynamic prototyping,
javascript glue code,

rapid development,
throw away code

5 bash, cold fusion, HTML application tie in, markup, glue code,
excel, Office VBA, mysql DSL, graphic based non-programmer

demographic,
inter-disciplinary

which can make it difficult to interoperate with non MATLAB based programs.

Additionally, the MATLAB programming language is not a suitable language

for complex programming task, and neither is it object oriented, making it

unsuitable for large scale systems and complex tasks.

• Octave [43]: Octave is an open source equivalent to MATLAB. It does not have

the GUI functionality of MATLAB, but Octave does provide a close approxi-

mation to MATLAB’s numerical capabilities. Most MATLAB code can run as

is in Octave, with only a few modifications.

• Sage [123]: Sage integrates a large number of open source numerical packages,

such as R and Octave. It integrates all the packages through the use of Python,

a high level programming language.

2.10 Languages

59

2.10.1 Simulation and Framework Development. The development lan-

guage, or languages, for the SOMAS framework must meet a number of criteria.

• speed

• libraries

• documentation (if unfamiliar)

• hardware and software compatibility

• rapid development

• extensible code structures (i.e. functional, OO)

• interoperability

Table 4 shows the wide range of languages currently available. The framework

should be fairly OS agnostic, but the top level environment is either Windows or

Linux, since it adds unnecessary complexity have a hybrid system. Since each chro-

mosome is evaluated by running a simulation, the simulations must run very quickly

to achieve useful results in a realistic time frame. High level languages, such as Python

and Perl, are not suited for developing simulations because even their compiled code

is much slower than lower level languages like C and Java. The language also must

be object oriented to both ease development and allow extensive improvement.

The SOMAS framework should be easy to extend and deconstruct. Monolithic

frameworks quickly become unmaintainable and unuseful. So, the language must lend

itself to loosely coupled code development. Finally, it is beneficial if the language can

be used for the whole framework, but this is not a necessary condition. The loosely

coupled approach allows a number of different languages to be used as long as they

share common interfaces. Thus, the object oriented and speed requirements restrict

the language choices to Java and C++.

2.10.2 Scripting. There are a number of scripting languages that have large

communities of use. Some are directly tied to an OS, such as the DOS and Bash

60

shells. Others are executed by running an interpreter, for example Perl and Ruby.

Since the scripting language needs to easily manipulate files and file structures, as

well as process the contents of files using a variety of programs. Consequently, a shell

is most appropriate. Thus, the choice of scripting languages comes down to either a

Windows based shell such as DOS or PowerShell, or a Unix based shell such as Bash

or Ksh.

2.11 Summary

This chapter covers the necessary theory and packages to implement SOMAS.

It gives an indepth look at the range of issues involved with each subject. The topic

of network security and its great complexity is explained, with the suggestion that

it be decomposed using agent oriented design to produce multi-agent based network

defense. Models for formalizing multi-agent systems are described.

The difficulty with multi-agent systems is control and the necessary communi-

cation for control. If multi-agent systems are controlled with hierarchical communi-

cation then they do not scale well. Nature provides many examples of multi-agent

systems that scale very well without hierarchical control and communication, while

still effectively accomplishing global objectives. The techniques used to generate these

multi-agent systems are self organization and entangled hierarchies. Self organization

provides the control and communication takes place through entangled hierarchies.

To produce self organizing multi-agent swarms, search algorithms are necessary.

Stochastic, global search algorithms are the most general search algorithm. If

needed, they can be augmented with deterministic local search algorithms to improve

their effectiveness and efficiency. Along with the theory behind the search algorithms,

a number of algorithm packages are discussed. To evaluate the multi-agent swarms

that are produced by the search algorithm it is necessary to either simulate or emulate

the swarm’s network behavior.

61

Both network and agent simulation packages are covered. Additionally, visual-

ization and testing packages are listed for analyzing the search results. The languages

for programming and scripting the entire SOMAS system are covered, along with

criteria for picking the appropriate language. The theory is used to create an archi-

tecture design in the next chapter. The packages are used in the following chapter to

explain how the SOMAS architecture is implemented.

62

III. Problem Domain Considerations for Architectural

Design

3.1 Overview

The material covered in Chapter II lays the foundation for the network security

problem domain analysis and architectural design in this chapter. The design is the

basis for “a mobile, multi-agent system that uses self organization to create entangled

hierarchies...for accomplishing network based objectives” (see Section 1.2).

Figure 2: SOMAS architecture development process

The overall structure of the chapter is displayed in Figure 2. The general net-

work security problem domain is discussed in Section 3.2, where the structure of the

domain and the reward function are described. This structure necessitates a decou-

pling between global and local reward, and thus Section 3.3 explains the two levels to

the problem domain.

Once the problem domain is informally described, it is formally described as a

planning problem in Section 3.4, where it is further mapped to POMDP models. The

63

POMDP models allow the problem domain complexity to be determined, and due to

its complexity a global search algorithm is necessary.

The solution representation is discussed in Section 3.5 and the selection of a

multi-objective evolutionary algorithm for the global search is discussed in Section

3.6.

Finally, the elements of the SOMAS architecture are covered in Section 3.7.

3.2 Network Security Problem Domain

Table 5: Problem domain elements
SOMAS Agent Scenario Agent
< SensorsRegional, Rules, AcutatorsRegional > < SensorsGlobal, Rules, AcutatorsRegional >

Sensors Sensors
Real value vectors in limited range Depend on scenario
{(0 . . . 1), . . . , (0 . . . 1)}

Rules Rules
Modus Ponens Modus ponens
condition(sensors)→ actuator(region)

Actuator Actuators
Change agent’s region Change agent’s region
actuator(region)→ region′ : �(region′ = region)

Network Environment
< Locations, Edges, Scenario >

The specifics of each part of the network environment
depends on the specific scenario, as in the case of
the scenario agents.

Locations
< Agents, SensorsGlobal, Rules, ActuatorsLocal >

Edges
< SensorsGlobal, Rules, ActuatorsLocal >

Scenario
< SensorsGlobal, Rules, ActuatorsGlobal >

Can observe and change any aspect of the domain model

64

Table 6: Problem domain

Transition
Element States Action Functions

1 Agent (A) AS ≡ AP AA RS ×AA ×RS

2 Region (R) RS ≡ {V
′ : hops(V, V ′) <= 1} ∪ N/A N/A

{L : connects(L, V, V ′)}

∀v′, l ∈ RS : v′, l ∈ NS

3 Container (C) CS ≡ {CP ∪A} CA CS ×CA ×CS

4 Link (L) LS ≡ LP LA LS × LA × LS

5 Network (N) NS ≡ {NP ∪ NA NS ×NA ×NS

{L : connects(L, V, V ′)
∧ active(V) ∧ active(V ′)} ∪
{V : active(V)} ∪ A}

6 Scenario (S) SS ≡ {SP ∪N} SA SS × SA × SS

Global reward function : SS × Time→ [−∞ . . .∞]
Local reward function : AO → [−∞ . . .∞]

S subscript A state.
P subscript A parameter.
A subscript An action.
O subscript An observation, which only agents have.

The network of network security is a very general concept. While it can refer

to the standard wired network, it can also refer to wireless ad hoc networks as well

as logical networks that are instantiated in software. As such, the problem domain

is defined symbolically in such a way that it can be mapped to any such network.

It is important to define the problem domain symbolically in this way in order to

determine different general problem characteristics, such as runtime complexity, see

Section 3.4.4, or scenario dynamics, see Section 5.6.

To symbolically defined the problem domain, first the elements and their rela-

tions are identified in this section. Then, in Section 3.4, the elements are mapped to

formal models in order to produce complexity characteristics. The problem domain

elements are covered in Table 5.

65

The problem domain is composed of two primary elements: agent (A) and en-

vironment (E), which in the case of this research is a computer network (N). The

objective in this problem domain is, in general, to maximize the control of the net-

work’s owner. This encompasses many different network metrics, ranging from the

high level metrics such as mission accomplishment, mid level metrics such as quality

of service, and low level metrics such as intrusion detection. For a fuller discussion,

see Section 2.2.5.

The important thing to note is that all metrics are subject to a human agent’s

will, and the agent’s goal may not be something that can be measured in regards

to the network. Thus, it may be mathematically impossible to represent to highest

network objective in terms of a quantifiable metric. Ultimately, it comes down to

human judgement. Consequently, solutions to the network security problem should

leave as much flexibility to human judgement as possible, as the SOMAS approach

does by allowing any goal to be defined for SOMAS that can be qualified in terms

of the elements in table 5. Thus, SOMAS is a form of intelligence augmentation, as

discussed in Section 2.5.8.

For the purposes of this research all hardware in the network is assumed to only

be controlled by software. Physically securing the network hardware is outside the

scope of a computer science solution. Additionally, the container model assumption

implies that only relevant software state information is accessible for reading and

writing. If all locations in the network are constantly connected, then the container

can be considered to encompass the whole network. However, in general, this is an

invalid assumption. Thus, containers are segmented according to the links connecting

hosts in a network. Containers are described in further detail in Section 2.3.5.

The network graph is composed of vertices (V) and links/edges (L). The vertices

are equivalent to agent containers (C) for the purposes of this research. Table 6 further

symbolically details each problem domain element, and the following list explains each

symbol. Each state element is indexed with a time-stamp. Thus, the scenario state

66

SS(t) consists of all scenario state elements with time-stamp t. To reduce notational

confusion, the (t) index is only used on the global scenario state SS.

1. An agent’s state consists of a set of parameters. Its actuators can affect its

region.

2. A region state is defined as the agent’s local container state, the state of neigh-

boring containers that are one hop away, and the connecting links. All containers

and links in the region state must also be in the network state.

3. A container’s state consists of a set of parameters and all the agents in the

container. Its actuators can affect only its own state.

4. A link’s state only consist of a set of parameters, and its actuators can only

affect its state.

5. A network state contains a set of parameters, all active nodes, and their con-

necting links. Network actuators can affect the whole network state.

6. The scenario state contains scenario parameters and the network state. The

scenario actuators can affect the whole scenario.

The objective for the scenario is described by the reward functions. The reward

can either be specified at the global or local level. The objective can also be consid-

ered the swarm’s behavior, since the swarm’s is meant to accomplish the objective.

However, behavior can also refer to the swarm’s ruleset, in which case a swarm’s be-

havior is not necessarily the same as the objective since the ruleset may not achieve

the objective. There are many objectives that the swarm can achieve, and a list is

proposed in Appendix F. The specific behaviors that are examined in this research

are:

• Unobtrusive network activity

• Self organization

• DDoS prevention

67

• Avoiding occupied nodes

• Removing intruders from the network

• Competition between friendly and malicious agents

• Protecting the network information flows

The following is a simple example showing how the problem domain symbols are

used to define a behavior. Each objective is meant to be minimized. The behaviors

are further described and formalized in Section 5.5.

Vital Vertex Identification: The behavior is to identify the vital vertices in a

network. The vital vertices are the minimal set of vertices in a network that cause

the greatest network degradation when they are removed. The extent of network

degradation is measured by comparing the cumulative length of the shortest path

for all pairs of vertices and the number of disconnected vertices before and after the

vertices are removed.

This is almost the same as the metric of network degradation in [19]. The

difference lies in counting the number of disconnected vertices. The original metric

did not do this, and only has a single objective. Using a single objective raises the

problem of rating the cost of disconnected vertices. However, making the metric

produce a double objective measure eliminates the ambiguity.

Finding the vital vertices in a network is an NP-Hard problem [19]. The dif-

ficulty of the problem is increased by the fact that the problem information is only

partially observed, each agent only has a partial view of the whole network. Equations

(56-57) measure the network degradation. Equation (58) measures how concisely the

agents can identify the vital vertices.

∑

∀u∀v(shortestPath(u, v)↔ u, v ∈ C ∧ u 6= v) (24)
∑

∀u∀v(pathExists(u, v)↔ u, v ∈ C ∧ u 6= v) (25)

|ID| : ID ∈ C (26)

68

Figure 3: Offline to online search

Where C is the graph’s vertex set, which is equivalent to the graph’s container

set. ID is the set of vertices identified as being vital vertices.

3.3 Offline and Online Swarm Generation

Since most real networks are subject to extensive and continuous change, espe-

cially when its security is being compromised through intrusion or attack, a swarm

that maintains a fixed ruleset will perform badly in the general case. To adapt to a

changing environment, a swarm needs to search for the best ruleset in a given envi-

ronment state. One way to do this is with reinforcement learning [88], which learns

a utility function. However, this assumes local access to a global reward, which may

not be possible.

According to the No Free Lunch Theorem [138], any two search algorithms are

going to be equivalent to each other across all possible fitness landscapes, and thus

no better than Monte Carlo sampling. This means learning work needs to be done

in order to guarantee the online search algorithm has better than random behavior

in the general case. Consequently, if there is an offline stochastic search at the global

level for the online search algorithm, then it is possible to mathematically guarantee

an online search algorithm that is better than or equivalent to all other online search

algorithms, in a given range, for all fitness landscapes.

As a result, there are two stages to the swarm’s lifecycle on the network: when

it is generated and when it is executed. These stages are shown by the two panes

in Figure 3. There are two problem representation (model) domains and two search

(algorithm) domains, respectively corresponding to the offline generation and online

runtime.

69

As described in Section 2.4.1, the agent schema in [88] is equivalent to the

POMDP model. The DEC-POMDP and I-POMDP models are the most comprehen-

sive for characterizing multi-agent systems. The differing perspectives match the two

stages in the swarm’s lifecycle, thus they are chosen as being the most suitable for

deriving theoretical characteristics for the problem domain, such as problem complex-

ity. Due to the nature of the reward function in either case, a DEC-POMDP model is

used for the offline problem representation where the agents can be modelled as coop-

erative and an I-POMDP model is used for the online problem representation where

agents may be competitive. Both are additionally augmented to be F(*-POMDP)

models in the case where agents can be added and removed from the environment, or

the environment can change.

The reason why the agents in the online stage may be competitive is because

an agent only has direct access to its own observations. To access the observations

of other agents requires communication, and communication affects the global state,

which can affect the agents’ local rewards. Since the global process in a computation

environment can be Turing complete, an agent may be incapable of calculating the

global state from its observations. Therefore, is not always possible in the general

case for the agent to know how its local observations map to the current local rewards

of other agents. Consequently, agents may minimize the local rewards of each other

through maximizing their own local rewards, and thus compete.

As mentioned in Section 2.4 it is intractable to generate optimal or approximate

policies from these POMDP models in all but the simplest cases. Thus, since a

POMDP policy is a ruleset, rulesets are not restricted to POMDP policies, the solution

domain in section 3.5 is generalized to a ruleset.

3.4 Mapping Problem Domain to POMDP Models

The problem domain is a planning problem [88]. All scenario state transitions

only depend on the previous state, so the Markov assumption holds for this problem

70

domain. Thus, transition functions only require the previous state, as shown in the

Transition Function column of Table 6. As discussed in the previous section, there

are two perspectives the multi-agent system can be viewed from: the global or local

perspective. From the global perspective, the viewer has access to the global state

and corresponding reward. However, from the local perspective, the viewer only has

access to the local state. Since the local state does not necessarily embed any global

information, it does not necessarily provide any global reward information. Thus,

from the local perspective agents may have to compete with each other to maximize

the swarm’s global reward. Since the two views imply two different kinds of reward

functions, two different representational models are necessary: the DEC-POMDP and

I-POMDP models.

3.4.1 DEC-POMDP Model. [22]

The DEC-POMDP model is a POMDP model for multiple agents that can

interact with the same environment and share the same global reward function. This

model represents a global perspective of the multi agent system, since only from the

global perspective can the group reward be known. The use of the model here does

not exactly match that of [22] since only the elements necessary to derive the problem

domain complexity are used.

ΨDEC :< S,A, T,Ω, O,R > (27)

• S consists of all scenario states PS ∈ P . This includes the state of each vertex

(V) and link (L), extra scenario info, etc.

• A is a set of sets, where each set is drawn from NA, the universe of possible

agent actions including the null action. Each set consists of possible aggregate

actions of agents in the swarm. It is defined according to formula (28), which

shows every action set is the same size and every agent accomplishes exactly

one action. ai is the action of agent i. n is the number of agents in the swarm.

71

{β}α means the closure of alphabet β, where all strings in β are of length α.

∀A[A ∈ A : A ∈ {NA}
n ∧ ∀ai, aj ∈ A{i 6= j}] (28)

Each action in NA is composed of agent actuators of the form δ(ΦS, γ) where

δ is a function with possibly irreversible side effects, ΦS is a set of elements

∀φS{φS ∈ ΦS : φS ∈ pS}, and γ is a set of parameters. The scenario can have

rules as well, but these are implied in the state transition and do not need to

be explicit in NA.

• T maps state/action set pairs to states, according to formula (29).

T : S ×A→ S (29)

• Ω is a set of observation sets, defined similarly to A, detailed in formula (30).

∀Ω[Ω ∈ Ω : Ω ∈ {NΩ}
n ∧ ∀ωi, ωj ∈ Ω{i 6= j}] (30)

• O maps T element/observation set pairs to probabilities, according to formula

(31). An element fe of function f is pair (x, y) : f(x)→ y.

O : TE ×Ω→ (0 . . . 1) (31)

• R is the global reward, identical for every agent since it is global, accruing a

value in R for each element of T , detailed in formula (32).

R : TE → [−∞ . . .∞] (32)

As an example of how this model can be used, consider the scenario where SO-

MAS agents have to identify and eliminate malicious agents from a network. The

environment states, observations, and actions are straightforward. A state transition

72

in the T function is, for example, a SOMAS agent changing its location. An obser-

vation in the O function is when the SOMAS agent at a location runs an intrusion

sensor on the location. The state (there is a malicious agent at the location) and

the scan action have a probability that the SOMAS agent will actually identify the

presence of the malicious agent. Finally, an example of an element of the R function

is when the malicious agent has been located, the SOMAS agent successfully deletes

the malicious agent.

3.4.2 I-POMDP Model . [40] Unlike in the case of SOMAS generation with

global information, SOMAS generation with local information cannot make use of a

group reward, since the agents in the swarm cannot necessarily have a global view

of the swarm and environment state. Consequently, each agent has a local reward.

Additionally, since observations are limited and local competition can maximize the

global reward, agents cannot completely trust each other. Thus, they need to be able

to examine each other, have beliefs about each other, and have local reward functions.

These capabilities are key to the I-POMDP model. The use of the model here does

not exactly match that of [40] since only the elements necessary to derive the problem

domain complexity are used.

ΨI :< ISi, A, Ti,Ωi, Oi, Ri > (33)

• ISi pairs environment states with agent tuples, where, as opposed to the DEC-

POMDP model, {S ′ : A\∅, S}, there is no agent element in the state tuple. The

notation {α\β,Γ} in the previous formula means to replace literal α with literal

β in string Γ. The set of agent tuples includes all agents except for agent i.

Thus, a pair in ISi follows the schema (s′, ψI), where ψI is a set of instances of

agent schemas with |ψI| = n− 1 and n is the number of unique agents in ΨI .

• A is a non empty set in NA, {A : A 6= ∅ ∧ A ∈ NA}.

73

• Ti describes the standard POMDP transition function for agent i, as detailed

in formula (34).

Ti : ISi × A→ ISi (34)

• Ωi is agent i’s observation of its environment, which technically can include di-

rect observation of other agents’ states, but is usually not allowed. However, this

is quite possible at least amongst SOMAS agents that share the same container,

so an observation can indeed include the direct state of other agents.

• Oi, similar to the DEC-POMDP, maps pairs of Ti elements and observations to

probabilities, as detailed in formula (35).

O : TiE ×Ω→ (0 . . . 1) (35)

• Ri, unlike its corollary in the DEC-POMDP, is an agent specific reward, which

may or may not cooperate with that of an arbitrary agent j. This is due to

the fact that the optimization of the global reward may require competition

amongst swarm agents. The function is detailed in formula (36).

Ri : TiE → [−∞ . . .∞] (36)

3.4.3 F(*-POMDP) Model. Both the DEC-POMDP and I-POMDP models

have an important limitation in that they are static and finite. Thus, while they can

represent a decreasing number of agents, they cannot represent a limitless increase in

agents. The models also cannot represent agents that can change their own or other

agents policies. In order to get past these obstacles, it is necessary to introduce a

transition function between POMDP models. This transition function is not found in

the literature, but it allows the POMDP models to adapt to changes in environment.

The F(*-POMDP) notation is used because it represents that the augmentation is a

74

function mapping POMDP models to POMDP models, which are generally referred

to with the asterisk.

For another demonstration of the utility of this POMDP representation in dif-

ferent simulation and testing domain, please see appendix G where the QuERIES

model is examined and the applicability of the F(*-POMDP) model is recommended.

T ′ is the model transition function described in section 2.4.1, which maps mod-

el/action set pairs to models. The notation {α\β,Γ} works as described in Section

3.4.2.

{T\T ′, ∗POMDP}|T ′ : ∗POMDP × S×A→ ∗POMDP (37)

T ′ is necessary for both the DEC-POMDP and I-POMDP models of SOMAS

production since agents are added and removed from the environment in both cases.

3.4.4 Complexity of Deriving Model Policies. From the POMDP model

complexity results in section 2.4 it is clear that even though the DEC-POMDP and

I-POMDP formalizations capture the SOMAS problem domain, it is impractical at

this stage of the cutting edge to generate the SOMAS policies from either the DEC-

POMDP or I-POMDP models. Since T ′ is potentially Turing complete, i.e. finite state

machine with 2 pushdown stores, it is susceptible to the halting problem. Therefore,

it is logically impossible to solve F(*-POMDP) models in the general case algorith-

mically. However, this does not rule out the possibility that the models can generally

be solved mathematically, i.e. with proofs. If a policy solution is generated from the

F(*-POMDP) model, it becomes a part of the model since agents can manipulate the

policies of agents, so an infinite horizon policy has to be a fixed point function.

As can be seen in the case of each model, while they succintly capture the the-

oretical aspects of each stage of SOMAS production, optimal or approximate policies

cannot be derived from the models in general in a tractable manner. This means a

75

different representation and policy generation algorithm is required for the solution

domain.

3.5 Solution Domain

A solution consists of a behavior that accomplishes a certain objective. The

behavior depends on the agent rulesets (R) and the environment. A behavior from

the global perspective is a state/action tuple to probability mapping function, formula

(38). A behavior from the agent perspective is a rule (r) to probability mapping

function, formula (39). An objective is an environment tuple set to reward mapping

function, formula (40). ℘(Ω) is the powerset of Ω.

Bg : S × A→ (0 . . . 1) (38)

Bl : r → (0 . . . 1) (39)

R : ℘(S)→ [−∞ . . .∞] (40)

The intent is to find a solution S given an initial definition of self organized

behavior that maximizes the reward, and this can be done at either the global or

local level, (see formula (41)). Thus, a solution consists of a set of rulesets, out of all

possible rulesets, that maximizes the reward.
∑

f ◦ g is the sum of the range of f ◦g.

∀b1∀b2{b1, b2 ∈ B[gl] :
∑

b1 ◦ R ≥
∑

b2 ◦ R → b1 ∈ S} (41)

Where a rule is sequence of operators (δ) and operands (γ). Rulesets (R) are

defined according to formula (42).

∀r∃δ∃γ{r ∈ R : δ ∈ r ∧ γ ∈ r} (42)

If the rules and the sequence of operators in the rules of a ruleset are fixed, then

finding the solution at the local level is detailed in equation (43), which states that

76

a solution is a fixed size set of operands. A fixed ruleset is chosen in order to reduce

the state space complexity and based on the assumption that the required rulesets

are accessible to the SOMAS creator.

argminγ∈bR(
∑

bR ◦ R) (43)

Where bR is the behavior formed by ruleset (R). In this case, the argmin

function is equivalent to deriving the policy for a POMDP model, since the set of

possible actions is fixed.

3.6 Algorithm Domain

To develop a good search algorithm, first it is important to characterize the best

type of search algorithm to use. Table 7 shows a way of subdividing search algorithm

types so as to make an appropriate algorithm selection based on what is known or not

known about the problem domain. When the fitness landscape is not well known an

analysis of the problem and solution can give a general rule of thumb for additional

fine tuning of algorithm selection.

Once the algorithm is selected, the objective space needs to be defined. Gener-

ally, the objective space can either be single or multi-objective. While single objective

spaces have been extensively explored, multi-objective problems are less well known

in computer science domains, though they are well studied in the field of operations

research and other engineering disciplines.

3.6.1 General Algorithm. Finding optimal policies for either the DEC-

POMDP or I-POMDP models is intractable because the problem is not greedy in

structure such that an optimal solution can be built from optimal subsolutions [98]

and the search landscape is not known. The search landscape is not known since the

POMDP model being used is generally unsolvable, see Section 3.4.3. Therefore, a

global solution space search is required as shown by table 7.

77

Algorithm 1 Deterministic global solution search

Spi ← {init()};
Sfo [0]← {};
t := 0;

Ensure: ∀sp{sp ∈ S[t]→ sp ∈ Spi }
Ensure: ∀sf{sf ∈ Sf [t]→ sf ∈ S[t] ∧ F(sf)}
Ensure: ∀sf{sf ∈ Sfo [t]→ sf ∈ Sf [t] ∧ C(sf ,Sfo [t− 1])}

while O(Sfo [t], t) 6= TRUE do
t := t+ 1;
S[t] := generate(Spi ,S[0. . . t− 1])
Sf [t] := feasible(S[t])
Sfo [t] := select(Sf [t],Sfo [0. . . t− 1])

end while

Algorithm 2 Stochastic global solution search

Spi ← {init()};
Sfo [0]← {};
t := 0;

Ensure: ∀sp{sp ∈ S[t]→ sp ∈ Spi }
Ensure: ∀sf{sf ∈ Sf [t]→ sf ∈ S[t] ∧ F(sf)}
Ensure: ∀sf{sf ∈ Sfo [t]→ sf ∈ Sf [t] ∧ C(sf ,Sfo [t− 1])}

while O(Sfo [t], t) 6= TRUE do
t := t+ 1;
S[t] := generate(Spi)
Sf [t] := feasible(S[t])
Sfo [t] := select(Sf [t])

end while

78

Table 7: Search algorithm types

Known Unknown

Local Partial Partial
Deterministic Stochastic
(Depth First) (Random Walk)

Global Full Full
Deterministic Stochastic
(Breadth First) (Monte Carlo Sampling)

Algorithm 1 is the general format of global solution space search algorithms. A

superscript p means a partial solution and a superscript f means a feasible solution.

Feasible solutions encompass complete solutions, since a solution must be complete

in order to be feasible. A subscript i signifies the input set and a subscript o signifies

the output set. S is a set of solutions, and these can be either partial or feasible. O

is the objective, which is a function of both the output solution set and the current

iteration count. F is the feasibility function, which ensures the solution is feasible.

Finally, C is a choice function that selects the best solutions to be added to the output

set from the current set of feasible solutions.

Both generate and select are also functions of their respective sets’ pasts in order

to avoid cycles in the search for solutions. However, if a stochastic search algorithm is

used, then cycle detection is unnecessary, and the search algorithm can be simplified

To algorithm 2. As long as a stochastic search can always sample the correct portion

of the solution space at the correct time to fulfill the objective function, then the

algorithm is guaranteed to halt [88].

This result holds for all finite search graphs, and infinite planar search graphs.

However, if the graph is non planar, then the guarantee no longer holds [58]. While

the solution search space is not a planar graph, the network goal states search space

can be, if the network graph is finite or planar. Since all real world networks are finite,

then any network goal state search that incorporates a random walk is guaranteed to

eventually find the goal state. However, while halting is guaranteed, efficiency is not.

79

Table 8: Algorithms mapped to fitness landscape characteristics

Hilly Craggy

Smooth Tabu search Evolutionary strategies
Rough Simulated annealing Evolutionary algorithm

Therefore, it is important to also include memory and/or a heuristic in the search

algorithm.

The field of metaheuristics provides numerous general approximation search

techniques, such as simulated annealing, Tabu search, evolutionary algorithms, and

ant colonies [82]. Evolutionary algorithms (EA) are most suited for the SOMAS

problem domain because they search the global solution space and an effective swarm

needs to incorporate multiple kinds of behaviors (building blocks).

Table 8 shows the general mapping of global search algorithm types to landscape

characteristics. See Section 2.6.1 for a discussion of the different kinds of character-

istics. Systems with positive feedback loops have the potential to become chaotic and

unstable. Feedback is one of the main characteristics of self organization, see Section

2.5.5. Consequently, the SOMAS rulesets can have chaotic effects. This means mi-

nor changes in the rule parameters can have great effects, and major changes in the

rule parameters can have small effects. So, the slopes to the optima are very rough.

As discussed in Section 1.5, the potential for instability is a serious concern when

considering whether to use SOMAS in a given problem domain.

Depending on the complexity of the scenario and the corresponding goal, the

best SOMAS behavior may be composed of many sub-behaviors. Sub-behaviors imply

agent rulesets that are significantly different from each other. But sub-behaviors

contribute to the reward of the overall behavior to different degrees. This means a

complex problem usually has a very mountainous search landscape.

Based on this analysis of the SOMAS search landscape, Table 3 states simulated

annealing and evolutionary algorithms are the most suitable global search algorithms

for the SOMAS problem domain. Since hilly landscapes are a subgroup of moun-

80

tainous landscapes, evolutionary algorithms can cover a wider variety of landscapes

than simulated annealing. So, an evolutionary algorithm [16] is selected for the search

algorithm. As discussed in Subsection 3.6.4 the objective space is multi-objective. So,

the evolutionary algorithm must be a multi-objective evolutionary algorithm.

3.6.2 Genotype. Due to the design decision in section 3.5 to fix the operators

in the rule set, the solution consists of a vector of operands. Since the number of

operands each operator requires is fixed, and the number of operators is fixed, the

size of the operand vector is also fixed. The design decision for the search algorithm is

to use evolutionary algorithms (EA) for both the off and online SOMAS production.

As discussed in [107], there are numerous EA solution representation techniques.

The binary string and real value vector options are the most relevant. Since all repre-

sentations are encoded as binary strings at the machine code level, the binary string

representation is more general and encompasses the real value vector representation.

Additionally, since the evolutionary algorithm is considered the most suitable for the

fitness Landscape 3.6.1, and traditionally it uses a binary string representation for its

solutions, the binary string is a good choice for the solution representation.

There are a number of issues involved with using a binary string representation.

First, it is important that the hamming distance between genotypes is related to

the distance between phenotypes. This ensures that children are related to their

parents. If this were not the case, then the operators would violate the requirement

for variation operators in formula (46), since the solution generated by the variation

based on a set of parents would be equivalent to the solution generated given an

arbitrary sample from the solution space. Such a result would make the search no

better than a Monte Carlo sampling of the solution space. The Hamming distance

problem can be solved, to a degree, by using a gray coding [15]. Gray coding takes a

standard binary encoding of some value and, using a reversible function, transforms

it so if any arbitrary bit is changed, the new value only differs from the old value by

81

1. It is an O(n) operation, where n is the length of the bit string, so gray coding does

not add significant overhead to the algorithm.

Second, the use of genetic operators means the schema theorem is applicable.

Since the distance between bits in a binary string schema affects the likelihood the

schema can be disrupted by variation, the epsistasis of good blocks is a concern. This

problem can be dealt with in a number of ways. At the representation level, a messy

representation can be used, where alleles in the chromosome no longer are placed in

positions (though they retain positional information), eliminating the problem of bits

being inserted or removed from schema. At the operator level, this problem mainly

occurs when multipoint crossover is used, since all bits between the crossover points

are potentially changed. Consequently, if uniform crossover is used instead of using

multipoint crossover, then this is equivalent to using a messy representation, since the

position of bits only matters insofar as the position dictates the solution’s phenotype.

Often it is the case that the genotype does not map to a feasible phenotype.

This is true for the SOMAS problem domain as well. There are a couple of ways of

dealing with infeasible solutions. Perhaps the simplest is to merely discard the solu-

tion. However, even infeasible solutions can contain good building blocks. Another

technique is to penalize the objective function. The problem with this technique is

that perhaps the building block is very good. If so, then the building block may still

not be selected since its objective value has been decreased. A good solution to these

problems is to add feasibility as an objective. Then, if the building block contributes

to good objective values, this is fully represented in the objective space. The feasi-

bility metric ensures that even with good building blocks the infeasible chromosome

will still be penalized in relation to all feasible chromosomes.

3.6.3 Phenotype. In section 3.5 it is stated that a solution consists of a fixed

size set of operands. Since the genotype is of a fixed size, that means the operands

are of a finite fidelity. In order to make the chromosome as flexible as possible, it

82

Figure 4: Genotype to phenotype conversion

is important to make the phenotype values capable of being used in any operand

position.

Consequently, the genes all map to a floating point value in the range (0 . . . 1),

as shown in Figure 4. Thus, the operators and operands are loosely coupled and the

operands are invariant with regard to changes in the chromosome. For instance, the

gene size can be increased and the meaning of the phenotype remains the same tothe

operators, only the fidelity is increased. The operators, in turn, can convert the value

to the necessary form, such as a negative number or scaled between (0 . . .∞] using

an asymptotic scaling function.

3.6.4 Objective Space. Once the phenotype is generated, the resultant

swarm behavior is evaluated in the simulator. Often, multiple metrics are necessary

to characterize a desired behavior. This makes the problem a multi-objective problem

(MOP).

There is often a tradeoff between objectives; it is usually impossible to find a

single solution that minimizes each objective. Such problems are common in the field

of operations research and engineering. In operations research, there are two main

techniques for dealing with multi-objective optimization. The objectives are either

reduced to a single objective, augmented, or solutions are compared based on their

83

Pareto dominance [36]. Since the latter technique is more general, it is used to rank

the solutions into Pareto equivalent sets, as detailed in equation (44).

PFTRUE = ∀f(argminPs∈S(f(s)) : f ∈ F) (44)

The best set is called the PFTRUE, since it is the Pareto dominant set out

of all the solutions, also known as the Pareto front. In the case of a search for an

approximate solution the solution set is PFKNOWN since it is the known best set, but

not necessarily the optimal set. argminP is an argmin function that uses a Pareto

dominance ranking metric to find the Pareto dominant set of solutions.

Multiple objectives in MOPs do not generally map in a regular pattern to the

decision space. Additionally, the curse of dimensionality implies the objective vector

mean lies in a radius around the vector composed of the mean of each objective, and

the radius increases with the number of objectives [23]. Therefore, it is useful for a

MOEA to be more exploratory as the number of objectives increase. At the same

time, as the algorithm nears the PFTRUE it must become more exploitative in order

to actually reach the PFTRUE, or get significantly close.

3.7 SOMAS Architecture

3.7.1 SOMAS Algorithm Design. As shown in Figure 6, there are three

primary sections to the SOMAS production system, per the standard functions in a

evolutionary algorithm [16]. While there are four standard functions in an EA, the

figure only contains three since the recombination and mutation functions are grouped

into the more general variation function. The evaluator gives each chromosome an

objective value set (O : O 6= ∅). |O| > 1 in the case of multi-objective evolution, as

is generally true in SOMAS production. The objectives are derived according to an

objective view of the global behavior reward, but they can be transformed in order to

affect the search. For example, proportional selection [16] scales the objective values

so when a plateau is reached selection is still highly elitist.

84

Figure 5: SOMAS evolution concept

In the case of the SOMAS production system, the objective values are obtained

from a set of metrics that measure the simulation. The selector makes use of an order-

ing metric to select the fittest solutions for use in generating new solutions. Selection

is straightforward if only single objective selection is required. Because fitness values

are usually numeric, then a simple ordering metric is numerical comparison. If the

fitness values are non numeric, then other metrics can be used, such as lexicographic

comparison [16].

Comparison is more complex in the case of multi-objective problems, as de-

scribed in Section 3.6.4. Numerous algorithms have been developed to deal with

multi-objective selection. Due to the loose coupling inherent in the framework de-

sign, any selection algorithm can be placed in the selection section without affecting

the other sections.

The variator takes the solutions selected by the chromosome and uses a set

of variation operators on the solutions to generate a new set for evaluation. The

85

Figure 6: SOMAS MOEA design

variation operators must at least follow the criteria symbolized by general formulæ

(45, 46). These formulæ state that the generated solution set S ′ cannot be a subset

of S, and the probability of generating the set S ′ given S is greater than generating

S ′ given an arbitrary solution sample S.

S
V
→ S ′ : P (S 6⊃ S ′) > 0 (45)

P (S ′|S) > P (S ′|S) (46)

Where S is a set of solutions. V is the set of variation operators and
V
→ means

the use of V to create a new set of solutions. Finally, S is an arbitrary solution

set drawn from the solution space NS. Basically, these equations specify that the

variator must contribute to the search. They present a unambiguous formulation of

the necessary and sufficient conditions the variator must meet.

86

Figure 7: Cluster rule

3.7.2 Agent. Each agent has a set of sensors and rules. There are a set

of actuators, but only the rules can access these. See Table 9. Additionally, each

agent has a memory, which it can use to store information about itself, such as its

fitness value, and information used by its actuators, such as parameter values and

chromosomes for creating new swarm agents.

When the simulator executes an agent, it first executes all its sensors. This sets

the values in all the sensor variables used by the rules and any parameter variables

necessary for the actuators, signified by “state” in the table. Then, each rule is

executed, and the rule’s execution is mediated by the weights, as shown in figure 5.

There two main ways the weights can be used to execute the rules, as used in machine

learning [23]:

• clustering, see Figure 7

87

Figure 8: Classification rule

• classification, see Figure 8

The cluster rule is formalized by equation (47). The classification rule is for-

malized by equation (48). Only the classification rule is used in this research.

∆ =
⋃

δ

∃r ∈ R : distance(~weightsr, ~parameterssensors)→ δ (47)

∆ =
⋃

δ

∃r ∈ R : mean(~weightsr.× ~parameterssensors)→ δ (48)

If a rule is fired, it executes its actuators. The actuators are the only aspect

of the agent that can affect the agent’s environment as well as its state. The sensors

and rules can only affect the parts of the agent’s state that deals with the decision

process, which is composed of sensor variables, weights, and actuator parameters.

3.7.3 Location. Like the agents, a location has both a sensor and a rule set.

There are two main differences between agents and locations. First, only locations

88

hold agents. Locations do not hold locations, agents do not hold agents, and agents

do not hold locations. Second, agents’ sensors are restricted to their location and

their location’s neighbors, and the other agents at these locations. Other than that,

a location’s sensor and rule set is very general, in order to allow for the widest range

of possible scenarios. An example of a location rule is fitness update based on fitness

of local agents.

3.7.4 Metrics. There are two primary types of metrics, runtime metrics

and metrics that are evaluated once the simulation is complete. Metrics can either

evaluate the whole scenario, or be responsible for evaluating only a section. Once the

simulation is complete and all metrics have been evaluated, the values are placed in

the objective variables, which are returned to the variator, which in turn gives them

to the selector. See figure 5.

3.7.5 Scenario Actuators. The scenario actuators are meant for two pur-

poses: global scenario actuators and general housekeeping. An example of the former

is updating the graph model as the locations are changed. For instance, if a location is

deactivated, the graph update actuator removes any edges connecting to the location

so agents do not visit an invalid location. An example of a housekeeping actuator is

a memory monitor, which ensures the agents do not cause a memory overflow.

3.8 Summary

The problem domain is formalized into a planning problem. To create an adap-

tive swarm, both global and local fitness functions are needed. The swarms with

global and local fitness functions are represented with DEC-POMDP and I-POMDP

models respectively. The inability of these models to represent arbitrary changes in

the swarm and environment is discussed, and a new, general model augmentation

F(*-POMDP) is introduced that allows the models to represent the mentioned ar-

bitrary changes, as required by the SOMAS problem domain. With the assumption

89

that the operators in the ruleset are fixed, the solution domain is simplified to the

generation of the correct operands for the operators. Since it is intractable to derive

solution policies from the augmented POMDP models with a local search algorithm,

approximate global search algorithms are investigated.

Due to fitness landscape analysis, an evolutionary algorithm is considered best

suited to generate swarms. The generation of the operands requires an architecture

that can search for and evaluate the behaviors generated by the optimal or an optimum

set of operands. Consequently, the architecture design is discussed.

The architecture is composed of two parts, corresponding to the two perspec-

tives: global and local observations of environment state and reward. Finally, the

algorithm domain is tied into the SOMAS architecture. The implementation of the

architecture, and how it is tied into a comprehensive testing system, is discussed in

the following chapter.

90

IV. Realization of SOMAS Architecture

4.1 Overview

With the high level design defined in Section III, the low level implementation

details are developed. The general design pattern and method for developing the

software architecture is covered in Section 4.2. Section 4.3 discusses the software

packages available for use in implementation. The search algorithms for the SOMAS

domain are discussed in Section 4.4. Section 4.5 describes how the simulation for

evaluating the SOMAS agents in the network environment, described in Sections 4.6

and 4.7 respectively, is implemented. Finally, Section 4.8 explains the difficulties and

ease of transitioning the simulation to a real world environment.

4.2 Software Development Methodology

The primary programming paradigm used for the SOMAS architecture is ob-

ject oriented programming. This method of programming is summarized by a set of

key attributes: encapsulation, loose coupling, and polymorphism. Object oriented

design is used to reduce code redundancy, simplify programming, and allow for easy

architecture extension. Following and generalizing these three design principles, the

properties design pattern is used for the SOMAS architecture, see Section E.

The main distinctions between the properties design pattern and object oriented

design is that the properties design pattern has full graph inheritance, and the classes

can be defined during runtime. These two attributes make the properties design

pattern more general than standard object oriented design, and allows the following

design patterns to be used.

4.2.1 Shared Object Coupling with Access Mediation. The properties design

pattern allows the objects to be instantiated so they are loosely coupled. However,

the scenario generatior couples many of the components by causing them to share

a common object. While this does couple the components in one way, it is not the

same as tight coupling, since components that share the same object do not need

91

to know anything about each others’ internals. Instead, they communicate using a

shared variable.

The scenario generator is the only component that directly accesses the inter-

nals of objects in order to set their parameters. In this sense, the scenario generator

is termed an “Access Mediator” since once it has set the parameters on each compo-

nent correctly, each component does not need to be aware of any other components.

Normally, each component at least needs to know about the interface offered by a com-

ponent it needs to interact with. Thus, access mediation provides an even lower level

of coupling, “shared object coupling,” than discussed in traditional object oriented

software engineering.

4.2.2 Formal Modelling. Using lisp, it is possible to design a simple domain

specific language (DSL) that completely details the property interrelationship between

objects, which is called a schema. The simplified syntax allows the schema to be

automatically verified. The essential conditions that must be verified are that all get

operations on a variable are chronologically precceeded by a set operation, and that

all set operations are precceeded by variable declaration. A property is essentially a

label for a variable within a certain context. Consequently, variables can have multiple

labels within multiple contexts.

The variables are labelled during the definition of a context, which is specified

with the schema DSL. Additionally, the DSL specifies when the get and set operations

are performed on a variable. To verify the essential condition the labels for a specific

variable must be connected together to ensure there is an unbroken chain between

the get and set operations.

Due to the fact that a variable can be contained in multiple contexts, and the

definition of these contexts can be nested within each other, connecting up the labels

can be a somewhat tricky process that requires both back and forward tracking. For

instance, a variable’s label series can be backtracked from a get to the original variable

declaration. However, the actual set operation might take place within a context that

92

is defined between the get and declaration. Consequently, once the backtrack has

identified the original variable, a forward track is necessary to find the set operation

in the nested context.

4.3 Package Selection

The needs that dictate package selection from the many possibilities covered in

Section II are:

• Availability

• Ease of use

• Extensibility

• Efficiency

• Effectiveness

• Language

• Target OS

• Parallel/grid computing capabilities

• Maturity

• User community

All the following packages were selected with these criteria in mind. Not all

criteria are necessarily met by the packages. For instance, many are not made for a

parallel/grid environment, though they often can be adapted. But, as many criteria

as possible are met by the following packages.

4.3.1 Simulation and Visualization. Since MASON is both written in Java

and meets many of the requirements of the SOMAS framework, as well as being

purpose built for multi agent simulation, is it the chosen simulation and visualization

package. MASON is combined with JUNG to ensure the network visualization is

93

nicely laid out. JGraphT is used in MASON for generating the random graphs used

in the simulations, and for executing different graph algorithms, such as shortest path

and max flow calculations. CERN’s high performance mathematical library, Colt,

is used in a couple areas of the SOMAS framework where probability distribution

functions are required for random sampling. Weka’s clustering capabilities are used

to perform clustering in the self organization metric.

4.3.2 Evolutionary Algorithm. The PISA framework is chosen because it

provides both a rigorous multi-objective algorithm testing environment, and many

appropriate search algorithms. Even though the PISA framework [24] does not pro-

vide the general functions to implement particular variator algorithms, the sample

algorithms on the PISA site are easily customized for the SOMAS problem domain.

During initial development, customization of an existing algorithm is the most effi-

cient and effective way to generate a working algorithm, compared with creating a

new algorithm from scratch, so it is chosen for creating the SOMAS variator.

4.4 Search Algorithms

4.4.1 MOEA. See Section 3.6 for the discussion about the algorithms used

in the SOMAS architecture and multi-objective optimization. A MOEA in the PISA

framework is composed of two pieces: the variator and the selector [24]. The vari-

ator is responsible for the creation of chromosomes and their evaluation, and the

selector selects the chromosomes to be used as parents for the next generation, as

shown in Figure 5. Currently, the nondominated sorting genetic algorithm 2 (NSGA2)

and strength pareto evolutionary algorithm (SPEA2) are the de facto selection algo-

rithms for multi-objective evolutionary algorithms, and each has its advantage over

the other. NSGA2 converges faster to the PFTRUE than SPEA2, but SPEA2 explores

the PFTRUE to a greater degree [69]. Since the curse of dimensionality requires a

search algorithm to be more exploratory as the number of objectives increases, in-

creased exploitation is still required in order to find a PFKNOWN significantly close

94

to the PFTRUE. The indicator based evolutionary algorithm (IBEA) [142] combines

the exploitation of NSGA2 and exploration of SPEA2 by using a quality metric, such

as the epsilon or hypervolume metric, and is used for selection in the thesis.

4.4.2 Operators and Parameter Selection For MOEA. As discussed in Sec-

tion 3.6.1, the fitness landscape of the SOMAS solution domain is mountainous and

rough. This means there are many local optima varying greatly in height, and the

slopes to the optima are not smooth.

The implemented mutation operator is uniform mutation: it looks at each bit

in the chromosome and flips it according to a probability. Since multiple objectives

in MOPs do not generally map in a regular pattern to the decision space, it is useful

for the MOEA to be highly exploratory. For this reason the mutation probabilities

are higher than in single objective GAs. Additionally, the large number of local

optima with a large variance in fitness also require the search to be highly exploratory.

Consequently, the probability of mutation is set to 1.0 and the probability that a

particular allele is mutated is set to 0.1. The likelihood that at least one allele is

mutated is 1 − 0.9α, where α is the number of alleles in the chromosome. Since

mutation in a GA is traditionally set to a very low value, such as around 0.01, this

parameter setting is comparatively very high for a chromosome of significant length.

The crossover probability is low in regard to normal GA settings, due to the

characteristic of MOPs where the good building blocks tend to have high epistasis and

occur rarely [36]. The crossover operator is a uniform crossover to avoid the difficulties

with high epistasis, as discussed in Section 3.6.2, where the longer a building block

is the more likely it will be disrupted. Additionally, the likelihood of crossover is

significantly smaller than traditionally used so as to avoid premature exploitation.

The probability the crossover operator is used is set to 1.0 and the probability of

crossover is 0.1 for each allele. The likelihood at least one allele is crossed over is the

same as the likelihood of at least one allele mutation, which is 1 − 0.9α, where α is

the number of alleles in the chromosome.. Traditional GAs tend to use multi point

95

crossover, instead of uniform crossover. So, while the likelihood of using the crossover

operator is very high, the likelihood that the same number of alleles is crossed over

as in a traditional GA is quite low.

4.4.3 Chromosome Evaluation. For the purposes of this investigation, the

variator section of the PISA MOEA framework is decomposed even further between

the variation and evaluation. Evaluation is turned into an interface, allowing any

evaluation object to be used that can translate the chromosome representation used

by the variator. A chromosome generates a specific behavior depending on the scenario

it is evaluated within. However, its general behavior is not restricted to a particular

scenario.

For example, if the chromosome is evaluated across multiple scenarios, then it

has an objective set for each scenario, as well as different kinds of meta-scenario objec-

tives, such as robustness or stability or survivability. This is because the chromosome

represents weights and parameter for the same set of sensors, rules, and actuators

across all scenarios.

It is possible that there are general settings for these agent elements that are

more effective and efficient than any other setting, for a specific set of scenarios. Of

course, according to the No Free Lunch theorem (NFLT) for optimization [139], it is

unlikely that there is a particular most-fit chromosome across all scenarios. But, it is

not an impossibility, since the total set of scenarios is not equivalent to the total set

of fitness functions that can evaluate the chromosome, and when the fitness function

domain is restricted the NFLT does not always hold [59].

Additionally, certain implementation concerns come into play depending on the

number of scenarios and the number of objectives per scenario. Since the scenarios

are randomized, two runs do not necessarily give the same objective values. Conse-

quently, the chromosome has to be evaluated over multiple runs on the same scenario,

with an overall statistic (such as sample mean or sample variance) representing the

chromosome’s fitness, or all objectives from all runs are included in the objective

96

space. The former is simpler, but the latter is more accurate since no information

is lost. However, as the number of objectives increases, the runtime of the selection

algorithm increases. Depending on the algorithm used, the overhead may climb ex-

ponentially. If it does, then it is necessary to use dimensional reduction to speed up

evaluation, approximate ranking, or reduce the population sizes [36]. Thus, to make

the objective space manageable, a statistic of the runs is used for the objective space,

instead of all objective values for all runs.

4.4.4 Single Scenario Evaluation. The swarm behaviors are evaluated di-

rectly in a scenario that simulates the setting for the swarm behavior. A swarm that

is meant to stop a network attack is evaluated in a network attack scenario. A swarm

that is meant to find the vital elements of a network is evaluated in a vital element

identification scenario.

The objective values are calculated according to metrics that measure the per-

formance of the swarm according to the mission objectives. For instance, in the

Information War scenario, the amount of information on the network that is pro-

tected, the number of nodes that still remain, and the number of malicious agents

eliminated all contribute to defining the optimal behavior of a defensive swarm.

4.4.5 Multi Scenario Evaluation. Some agent behaviors can be very com-

plex, and good building blocks are consequently far apart and hard to construct.

Consequently, it may be beneficial to use simpler behaviors as stepping stones to help

the chromosome evolve towards the goal behavior. This concept is very simple to im-

plement in a MOEA. All it means is that more objectives are added to the objective

space and multiple simulations are used to evaluate the chromosome. The results are

then averaged across the different runs as in the case with a single simulation.

4.4.6 Self Organization. The concept behind the self organization formula is

to quantify the amount of information needed to predict the future. This information

97

is the log2 of the number of causal states there are in a history. A causal state is a

set of pasts that have the same future configuration [117].

While it is possible to use the complete information available in the system

to quantify the predictive information, this can be very complex, and perhaps not

necessary to get a useful metric. Consequently, the use of statistics is considered.

The statistic for prediction can either be local or global. A local statistic is good for

fine grained analysis, which is preferable for visualizing the self organization taking

place on the network.

The downside of a local statistic is complexity. Since all potential influences for

the extent of the measured past and future must be taken into account, the number of

considered nodes grows exponentially as the length of measured time increases. Con-

sequently, a global statistic that summarizes the information for the whole network

is sufficient.

Where a property can be specified by a statically sized set of values the actual set

is used, such as the fitness value for each network node since the number of network

nodes does not change. Otherwise, where the set changes, such as the parameter

values for each agent in a F(*-POMDP) swarm that is on a particular network node,

a statistic is necessary. The statistic used in this case is the sample mean.

In most cases, the simulator is not executed for a long enough time to generate

the true future distributions for a given causal state. Consequently, some kind of clus-

tering is necessary to group similar future distributions. Otherwise, in such instances,

every future is unique, and there is as many causal states as there are futures. Thus,

the predictive information metric becomes meaningless.

To cluster the time sequences, expectation maximisation clustering is used. Ex-

pectation maximization clusters data with the simplest probability distribution pos-

sible to predict the greatest amount of data [23]. This is different than the technique

used by [117], where a χ2
.05 distribution is used. Expectation maximization is used

because the history does not contain enough time points to produce a large enough

98

Figure 9: Offline optimizing online search fitness function

sample space for the χ2
.05 distribution. The basic description of the procedure is found

in algorithm 3.

Algorithm 3 Self organization calculation algorithm

Future distributions ← clusterEM(futures for all pasts)
Return log2(future distributions)

4.4.7 Entangled Hierarchy. In order for the online search to be effective, its

ruleset parameters need to be optimized during the offline process so the emergent

search heuristic approximates the global state as much as possible. The offline process,

in general, evolves the online local fitness metrics, as shown in Figure 9. The online

local fitness metrics that are evolved are the basis for the online swarm’s entangled

control hierarchy, along with the chromosomes that each agent carries for instantiating

new agent swarm solutions. This entangled hierarchy consists of 3 mechanisms, shown

by Figure 10.

99

Figure 10: SOMAS entangled hierarchy

• The red arrows show how the swarm concurrently communicates through sensors

during a single time step t. Each agent can view the fitness value of every other

agent at the local node and these fitness values are used in each agent’s rules.

• As shown by the blue arrow, when the swarm has evolutionary actuators, each

agent can view the chromosomes of all the other agents, and each chromosome’s

fitness value, for crossover.

• The green arrow shows how the swarm at t influences the swarm at t+1. In this

case, since the swarm cannot look into the past, the influence is unidirectional.

The actuators in swarm(t) that can affect swarm(t+1) are the agent creation and

deletion actuators. Thus, the red control structure affects whether agents are

created and deleted, and the blue control structure affects which chromosomes

are used to create the new agents and what alleles make up the chromosomes.

These 3 mechanisms of control specify increasing levels of entangledness in the

control hierarchy.

1. NS No Search : Red

Temporal : local control

Solution space : no control

100

SOMAS agents are only created from a single set of parameters (a single chro-

mosome).

2. NE No Evolution : Red + Green

Temporal : regional control

Solution space : local control

SOMAS agents can be created from multiple parameter sets (multiple pre-

defined chromosomes).

3. EV EVolution : Red + Blue + Green

Temporal : regional control

Solution space : regional control

SOMAS agents parameter sets are evolved (new chromosomes are defined)

Once the environment changes, the online search may no longer be effective.

Consequently, the offline search must be capable of generating new online searches to

adapt to the changing environment, or generate online searches that can adapt to a

wide range of environments.

4.5 General Simulation Implementation

As discussed in Section 3.7, evaluation is accomplished by generating a SOMAS

swarm from the chromosome, executing the swarm in a simulation, and using a set

of metrics to generate the chromosome’s objective values. This section describes the

components used to construct the simulator. The SOMAS swarm and simulation

must be able to represent all elements mentioned in Section 3.2. Since the elements

are all self contained and do not need to directly interact with the other elements, the

design is based on a component model, where each part is a component that is run

independently during the simulation.

This design has a number of benefits. It allows the design and simulation to be

easily extended, since each component is loosely coupled with the other components.

Other frameworks such as NS2, SWARM, or swarmfare (see Section 2.7) can be used

101

Figure 11: Simulation component generation

Table 9: Distinctions between agent aspects

Aspect Input Output

Sensor environment decision state
Rule n/a or decision state decision state
Actuator n/a or decision state agent state or environment

to augment the components, providing extra capabilities. Since each component can

be executed independently of the others, their execution can be parallelized without

the need for significant synchronization, thus speeding up the simulation execution.

The simulator is given a series of components which it simulates individually,

either according to a deterministic or non-deterministic schedule. These components

are the agents, vertices, metrics, and miscellaneous actuators, as in figure 11. The

agents and vertices are combined to create the scenario and behavior. The metrics

are used to evaluate the effectiveness of the swarm behavior in accomplishing the

required objective. The miscellaneous scenario actuators are required for any other

housekeeping functions that are not covered by the previous three components.

102

4.5.1 Simulation Components. Each iteration of the MASON simulation,

see Section 2.7, executes a sequence of components. The components can either be

ordered or disordered and the sequence can be randomized. In this investigation the

sequence is not randomized, however, and is executed in the order that components

are added during the scenario creation with the scenario generator.

There is also a priority level associated with each component, and components

with a lower level are executed before components with a higher level. The execu-

tion order of components with the same priority is arbitrary. The priority level is

necessary because certain kinds of components should not be executed before others.

For example, the location actuators should be executed after the agent actuators,

since location state affects agent rule decisions. If the execution order of the two

types of actuators is unspecified some agents execute before and some after a location

changes its state. Consequently, the agents that execute after will potentially react

to a different location state than the first agent set.

4.5.2 Scenario Generator. The scenario generator is the heart of the sim-

ulator software. It is responsible for creating all the simulation components that are

executed by the simulator, which includes the use of sub-generators. Figure 11 details

the components that the scenario generator creates and adds to the simulator. The

primary responsibility of the scenario generator is to ensure all the components share

the correct variables. Most components share a variable dependency, such as the

rules, which are dependent on the sensor variables that the sensors set. The scenario

generator either creates and distributes these variables, or calls another generator to

create the necessary variables.

4.5.3 Agent Generator. The agent generators are necessary because the

scenario generator cannot create all agents that the simulation needs. During the

runtime, while most of the simulation entities’ existence is constant, the agents’ exis-

tence is not. The agents, locations, and miscellaneous actuators all have the potential

to create or delete agents. Consequently, runtime agent generators are necessary as

103

well. All agent generators have a common dependency on 3 variables. These vari-

ables contain the simulation’s scheduler and descheduler, and the agent’s location.

Besides these 3, each agent generator has its own specialized variable dependencies.

The unevolving agent generators are very unspecified in the additional variable de-

pendencies. They may have no more dependencies or many more dependencies. The

evolving agents generators require one more kind of variable, the chromosome, which

is used to instantiate the agent’s phenotype.

4.5.4 Network Generator. The network generator is primarily responsible

for composing the network topology. Since the topology does not change during the

execution, though nodes and links may be deactivated, the topology can be generated

entirely before the simulation is executed. Thus, the network generator is part of the

scenario generator.

4.5.5 Memory Kill Trigger. During preliminary testing, there was no limit

to the number of agents that could be created. Certain chromosomes would create

agents until the Java Virtual Machine (JVM) crashed. To stop this from happening,

the memory usage during the simulation is monitored, and the simulated is stopped if

the memory usage passes a certain threshold. Chromosomes that cause the memory

threshold to be exceeded are considered infeasible.

4.5.6 Graph Update. A number of the agent sensors and actuators depend

on a regional view of the graph. This way agents can determine the best location to

travel to, or the best location to deactivate. The graph updater keeps track of what

locations and links have been deactivated, and updates the global view of the graph

accordingly.

4.6 SOMAS Agent Implementation

A SOMAS agent is composed of 3 basic elements: sensors, rules, and actuators.

The rules use a decision function on the sensor values to decide whether to execute

104

Table 10: All implemented sensors, rules, and actuators
Sensors Rules Actuators

Agent List Comm Agent Change Location
Agent Order Compromise Agent Compromise
Agent DDoS Agent Compromise Agent Info Exchange
Agent With Most Pheromone Execute All Compromise Location
ArcTan Filter Receiver Agent Create Agent
Compromised Node Sender Agent Create Agent
Compromise Weighted Crossover Local and Location Chromosome
Context Pheromone DDoS Comm Agent Info Exchange
Local Chromosome Order Decrease Pheromone
Local Chromosome With Most Pheromone Delete Agent
Location Agents Cumulative Pheromone Delete Agent List
Location Chromosome Order Deposit Bad Info
Location Chromosome With Most Pheromone Increase Pheromone
Location Marked Increment Good Info
Location Number Agents Increment Info
Location Number Neighbors Mark Location
Location Order Mutate Self Chromosome
Location Pheromone Mutation Operator
Location Null
Location With Most Pheromone Send Comm Agent List
Metric Aggregator Set Location Pheromone
Next Hop Set Pheromone On Self Chromosome
Next Network Search Hop Unmark Location
Property
Random Value
Receiver Node
Select Thing
Self Pheromone
Sender Node
Target
Thing Pheromone Order
Thing With Most Pheromone

105

their actuators. The range of possible sensors, rules, and actuators in an agent is

detailed in Table 10.

There are two steps to the execution of an agent component. First, its list of

sensors is executed. Then its list of rules is executed. This ensures that all necessary

sensor values are initialized before they are used by the rules.

There are two ways the sensors, rules, and actuators are specified in an agent.

In the non-searching agents, the parameters are all set, consequently the relation

between the different aspects are all hardcoded. The sensors, rules, and actuators

are still differentiated, but the actuators are accessed directly instead of indirectly

through datastructures. On the other hand, the relationships between the sensors,

rules, and actuators are based on searching parameters within the searching agents.

Thus, they are accessed indirectly through a list datastructure, like the sensors and

rules. The rules are responsible for specifying the decision relationship between the

rules and the actuators, which changes based on the kind of decision making the agent

does, i.e. simple weighted or clustering.

Besides the generic agent elements of sensors, rules, and actuators, each SOMAS

agent also has a chromosome store. The chromosome store contains the set of chro-

mosomes that are varied by its genetic operators and used to create new agents. Each

chromosome has an associated fitness value, which the SOMAS agent can set. The

fitness value is used to select chromosomes for variation and creation. Each SOMAS

agent can see the chromosome set of all other SOMAS agents in its location.

Besides the chromosome fitness values, all agents and locations also have fitness

values. The agents’ fitness values can be set by themselves and by SOMAS agents.

The fitness value on an agent influences a SOMAS agent’s agent related rule decisions

that choose an action to take, such as whether to delete a local SOMAS agent. A

location’s fitness value is an aggregate of the fitness values of the agents currently

residing at the location.

106

Figure 12: Classification rule

4.6.1 Basic Weighted Rule. Each rule is an activation function. These

functions all follow the same format, which is analogous to a classification in machine

learning [23].

measure(~info, ~weightsactuator) > 0→ actuator .execute (49)

Where ~weightsactuator is a particular set of weights for the given actuator in

the range (-1, 1), which is also statically sized. The execution function used in this

implementation is to take the weighted average of the input variables. If the average

is above an execution threshold, then the rule fires its actuator. As shown in Figure

6, the weights partition the sensor space into an execution and non execution region.

convertweighted(~data) = mean(~weightsactuator.× ~data) (50)

107

Figure 13: Sensor data transform

4.6.2 Sensors. Sensors convert observation data into the information the

rules use to make decisions. An observation can contain data from both the agent

and its environment, which includes other agents. Adding random and static values

to an agent allow these value types to influence the decision rules. The formalization

of a sensor is:

convertactuator(~data)→ ~info (51)

Where ~data is statically sized sequence of values in the range (-inf, inf). ~data is

a statically sized sequence of values in the range (-1, 1).

Since the data that the sensor can perceive is potentially infinite, and the differ-

ent data elements that make up an observation need to be comparable to each other,

the sensor requires a scaling mechanism in order to restrict the data to a finite range.

This can be done in a number of ways, such as by restricting the perceivable data

to a certain numerical range, or by using a trigonometric function to scale the data.

Both approaches are illustrated in figure 13.

108

Figure 14: Online evolution

4.6.3 Online Search. The offline evolution evolves the agents local fitness

function, as well as the other necessary parameters and weights. See figure 9. By

using the global fitness, the offline evolution can approximate its evaluation at the

local level, providing the online evolution with the ability to respond to a wider

variety of changes in the environment. The local fitness approximation and action of

the swarm are necessary for online search. The fitness value approximation operates

by setting a local fitness function on an entity, whether that entity is the agent itself,

a chromosome it carries, etc., and using the local fitness functions to fire its rules,

select new agent chromosomes for agent creation, and delete other agents. The agent

uses the local fitness values in a population of chromosomes to select a chromosome

to crossover with its own chromosomes. It also mutates its own chromosomes at a

given interval. The operators it uses for crossover and mutation are the same as those

used for offline evolution.

The online search is essentially a search for appropriate agent behavior, where

the search is part of the behavior. The creation and deletion of agents serves to

create a hybrid between depth first and breadth first search. If an agent continually

creates and deletes an agent each iteration so that only a single agent is left from

the procedure, then this is equivalent to a depth first search. Alternatively, when the

agent creates more agents than it deletes, it is searching along multiple possible swarm

behaviors. When it deletes more agents than it creates, then the agent is performing

a heuristic search, i.e. reducing the options available on the open list as described

in [88].

109

Figure 15: Online search

The fitness landscape of online search is dynamic at two levels. At the simple

level, it is dynamic because the scenario the swarm is in is dynamic. The swarm

is thus searching for a behavior that best attains desired goal states. However, the

fitness landscape becomes more complex when the agent activities impact the scenario

and thus the state transition and reward functions. In this case, the online search

landscape is represented by a transition function that gives a probability distribution

over one fitness landscape transitioning to another based on evolved agent behaviors.

4.7 Network Implementation

For the purposes of the implementation, there is no difference between the agent

container, see Section 3.2, and network location, see Section 3.7.3. Consequently, both

are represented by the same data structure. Since the individual details of each host

are not considered, the sensors and actuators for the hosts are not implemented. In-

stead, the sensors and actuators provided by the container are stored in the agent’s

110

data structure, for simplicity of implementation. Due to the similarity between loca-

tions and agents, each location also has a sensor and rule list.

Additionally, a location contains a neighbor list and an agent list. The neighbor

list is continually updated during a simulation run, in order to take account of the

changes in the network structure, such as nodes being deactivated or reactivated. This

update is accomplished by the graph updater component, see Section 4.5.6.

4.8 Real World Implementation

Since the SOMAS is entirely implemented within the JVM, transitioning the

system itself to a real world setting is possibly trivial. The only augmentation neces-

sary is to distribute the components across a number of JVMs, such that each JVM

has a single network location, corresponding to the real network location on which the

JVM resides. Using remote method invocation (RMI), distributing the components

is straightforward. Remote method invocation allows local processes to invoke and

receive results from non-local objects.

Once the SOMAS is active on a new network, the number variables affecting the

swarm’s effectiveness increases due to the added constraints of real world networks.

A partial list of these variables follows.

• bandwidth

• latency

• heterogenous host systems (hardware, OS, other applications)

• interaction of external world with network

• interaction with other multi agent systems

• trust within and between computer systems

• mission specific needs

• limited computational resources

111

• implementation medium (i.e. if agents were to become embedded hardware)

• highly sensitive, volatile locations

• lack of containers on target hosts

The effect of the variables on the SOMAS’ environment is to increase its dynamic

and heterogeneous nature. Thus, the swarms need to be given operators that increase

their adaptive effectiveness.

4.9 Summary

To start the discussion of implementation the methodology for the software

development is covered. Besides the standard object oriented design, a design pat-

tern called the properties design pattern is used which allows objects to be loosely

coupled and formally analyzed. The selection of packages used for implementation

follows. The search algorithm selection, parameter settings, and implementation are

then explained. The primary part of the SOMAS architecture, the simulation used

for chromosome evaluation, is discussed next, since it is part of the variator in the

search algorithm. Finally, there is a discussion of the feasibility of transitioning the

simulated swarm to a real network, with the attendant increase in variables that affect

the swarm’s behavior effectiveness. The testing and analysis procedures and setup

for deteriming whether the SOMAS architecture successfully creates desired swarm

behavior is in the next chapter.

112

V. Measuring SOMAS Capabilities

5.1 Overview

This chapter defines and explains the testing hypotheses and methodoloy used

to accomplish the research goal and objectives with the implementation from Chapter

IV. The test hypotheses are described in Section 5.2. The methodology for conducting

the tests is described in Section 5.3. The relevant parameters for the MOEA and

simulation are in Section 5.4, and the behaviors and scenarios to be tested are covered

in Sections 5.5 and 5.6.

5.2 Test Hypotheses

From Chapter 1, the research goal is to investigate network security real-time

performance using a swarm of autonomous self organized agents that evolve a non-

hierarchical entangled cyberspace security management structure. See Section 1.2.

Therefore, the primary testing objective is to determine the impact of self or-

ganization and entangled hierarchies on generating effective swarm behaviors in a

variety of security scenarios. Since all the swarms are evolved using the self organiza-

tion metric, a plot of the PFKNOWN of each scenario is examined to visually identify

the relation between the self organization objective value and the other objective

values.

The success of online evolution compared to unevolving online search and lack

of online search, is evidence for the significance of entangled hierarchies for swarm

adaptation. As explained by Section 4.4.7, online evolution is an entangled hierar-

chy since each agent communicates with other local agents through its fitness value

in order to determine which chromosomes to use for crossover. If evolution is not

employed, then the impact of communication on swarm adaption is lessened as well

as the degree of entangled hierarchy, since the swarm adaptability is limited by the

agents’ chromosome set. Finally, the least influential entangled hierarchy exists in the

case when agents do not perform an online search.

113

Table 11: Hypotheses

Objective Hypothesis

Evaluate feasibility of self organization for
effective accomplishment of desired behav-
iors

- Self organization metric improves effec-
tiveness of search

- Visually identifiable self organization is
evolved

Evaluate feasibility of entangled hierar-
chies for effective accomplishment of de-
sired behaviors

- An entangled hierarchy becomes more ef-
fective as the scenario becomes more com-
plex

Table 12: Behavior experiment summary
Behavior Name Scenario Name Topology Topology Scenario

Complexity Dynamics Agent Dynamics

Minimal activity all n/a n/a n/a
Self organization all n/a n/a n/a
Preserve network all n/a n/a n/a
Enemy avoidance EnemyAvoidanceScenario Homogeneous Static Static
Intrusion elimination IntrusionEliminationScenario Homogeneous Static Dynamic
Network defense DDoSScenario Homogeneous Dynamic Dynamic
Competition CompetitionScenario Homogeneous Dynamic Dynamic
Information defense InfoWarScenario Heterogeneous Dynamic Dynamic

Table 13: SOMAS MOEA Parameters

Parameter Value

Allele mutation likelihood 0.1
Allele crossover likelihood 0.1
Chromosomes length (bits) 5000
Evaluations per chromosome 30
Simulation iterations 100
Memory threshold 50%
Initial population 100
Mu 50
Lambda 50
Generations 10
Runs 5

5.3 Testing Methodology

There are three elements required to test the effectiveness of the SOMAS swarms.

114

• A variety of behaviors and scenarios to compare swarm capabilities. The be-

haviors are described in Section 5.5 and the scenarios are described in Section

5.6.

• Metrics for measuring and comparing the capabilities of different kinds of swarms

for optimizing results for different behaviors. The metrics are described in Sec-

tion 2.9.1.

• Statistical tests to accept or reject the experiment hypotheses based on the

measurements. The tests are described in Section 2.9.2.

Once the SOMAS runs are complete, a series of bash scripts are used to format,

analyze, and visualize the data. First, all the objective vectors are normalized and

filtered, retaining only the PFTRUE approximation sets for each scenario involved.

Second, the metrics and statistical tests are generated. The metrics consist of the

epsilon, hypervolume, and R2 metrics, discussed in section 2.9.1. The statistical tests

consist of the Fisher exact and the Mann-Whitney non-parametric tests, discussed in

section 2.9.2. Finally, the Pareto front and the test results are converted to graphical

format for ease of reading and analysis.

The PFKNOWN for each generation is derived using the PISA dominance ranking

function. Gnuplot is used for plotting the PFKNOWN . All permutations of objective

functions in sets of 3 are graphed in 3D scatterplots. The shade of subsequent EA

generations in the plots are darker so as to show the EA’s search progression during its

execution. Besides the scatterplots, select chromosomes are executed and visualized

with the MASON simulation to determine whether recognizable self organization is

produced.

The results of the statistical tests are plotted with R using a shaded grid, where

grid cells represent test hypotheses and darker shades correspond to lesser a values

for rejecting the null hypothesis. Complete black entails a statistically significant

result, allowing a reader to quickly guage how a particular scenario fares in the tests.

115

Statistical significance means the a value for the experiment must be less than 0.05

in order to reject the null hypothesis.

5.4 Experiment Settings

The population size for each generation is 100, where 50 members come from

the previous generation and 50 members are produced by the variator. The initial

population consists of 100 individuals. Each algorithm is run for 10 generations to

produce a total of 1100 individuals, and 33000 simulation evaluations, due to the use

of 30 simulation runs per individual, see section 2.9.2. These parameters are chosen

so that a run takes at most 2 days to complete, while still providing enough results to

run the statistical tests and generate dependable p-values. If memory consumption

after an iteration passes 50% of the maximum heap size, then the simulation is halted

and the chromosome’s infeasibility objective is set.

5.5 Swarm Behaviors

As explained in Section 3.2 there are two primary elements to the problem

domain: SOMAS agents and the environment. The environment consists of the net-

work and the non-SOMAS agents (scenario agents). Each part of the environment

contributes to the environmental complexity.

• The network can either have a homogeneous or heterogeneous layout. A homo-

geneous layout means that nodes are connected with uniform probability, with

the qualification that each node pair only has one link. A heterogeneous layout

means that the probability of node connection is non uniform.

• The network topology can either be static or dynamic. A dynamic topology

does not retain the same node and link configuration throughout the scenario.

In these experiments, a dynamic network means that a node and its connected

links can be deactivated and reactivated.

116

• The scenario agents can either be static or dynamic. If the agents are dynamic,

then their locations, parameters, and the total number of agents can change.

The following subsections present a range of formalized behaviors that can be

tested in the network environments. However, the following behaviors are not tested

due to time constraints.

1. Network preservation

2. Vital vertex identification

3. Intrusion detection

4. Network attack

The behaviors in the following list are tested in the scenarios according to Table

12.

1. Enemy avoidance (assessing intrusions for avoidance)

2. Intrusion elimination (assessing intrusions for targeting)

3. Network defense (engaging intrusions)

4. Competition (assessing, targeting, and engaging intrusions)

5. Information defense (assessing, targeting, engaging, and reacting to intrusions)

Accordingly, the scenarios in table 12 become increasingly more complex. The

scenarios for Behaviors 2-4 all require many of the sub-behaviors necessary for infor-

mation defense, as discussed in Section 6. Finally, the scenario for Behavior 5 is the

most complex of all the scenarios, as is expected given that many of the others only

require its sub-behaviors. Thus, the scenarios represent 3 levels of complexity.

The increase in complexity allows greater exploration of the capabilities of self

organization and entangled hierarchies, fulfilling the test objectives outlined in section

5.2. The objectives relate directly back to the original goal in section 1.2.

By using these network security scenarios and behaviors, the metrics and tests

validate or invalidate the effectiveness of self organization and entangled hierarchies

117

for network security. Each of these behaviors is measured by a set of metrics as

explained in Section 4.4.4. Each metric is a component in the simulator, see Section

4.5.1, and is loaded into the scenario using the scenario generator, see Section 4.5.2.

The behaviors are formalized in the following sections. See Section 3.2 for in

depth symbol notation explanations. Subsection 5.5.1 explains the behaviors that are

used by SOMAS swarms in all scenarios. Subsection 5.5.2 explains the behaviors that

are only used by the SOMAS swarm in certain scenarios.

5.5.1 Swarm Specific Behaviors. The self organized behavior metric is the

most important swarm specific behavior. It is directly relevant to the research goal

of investigating the effect of self organization on behavior optimization.

The activity minimization and network preservation metrics are of general util-

ity. The feasibility metric is essential in scenarios where the number of agents can

increase arbitrarily. If the swarm fills up the memory space of the virtual machine,

then the simulation crashes and no measurements are taken.

1. Self Organized: The causal states are calculated with the algorithm detailed

in [117]. According to Shannon’s information theory, the log2 of the number of

causal states represents the amount of information in the set of causal states.

1

log2(|I
−
~H |)

(52)

I− The set of causal states, see Section 2.5.4 for details.

~H The simulation history.

The function is inverted so its maximization produces a minimum value.

2. Non Disruptive: The objective is to minimize agent activity on the vertices,

which entails minimizing agent movement, creation, and deletion. The function

measures the cumulative activity during the entire simulation run by summing

118

the absolute difference in agent population on each vertex for each time step.

∑

t∈Tt>1

∑

C∈C

abs(|AC(t)| − |AC(t− 1)|) : AC(t) ≡ A ∩ CS ∩ SS(t) (53)

T The set of all simulation time steps.

C The set of all network vertices during the course of the simulation.

A The set of agents.

SS(t) The scenario state at time t.

3. Network Preservation: The SOMAS agents can use node deactivation actuators.

Deactivating nodes can coincide with achieving objectives, but deactivating the

whole network is not generally a good security solution. To counteract this

tendency, the number of deactivated nodes at the end of the simulation is min-

imized.

|Ci(f)| : Ci(f) ≡ Ci ∩ SS(f) (54)

Ci The set of inactive containers.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

4. Feasibility: Feasibility is included in the behavior list because it is one of the

objective values, even though it is not a behavior. The objective measures

the swarms feasibility by flagging whether the swarm passed a certain memory

threshold during a simulation step. If the swarm uses too much memory, it can

cause the container running the agents to crash.

test

(

m(used)

m(total)
> c

)

(55)

119

test Boolean function that returns 1 if the condition is true and 0 otherwise.

m Memory measure.

c Constant threshold value.

5.5.2 Scenario Specific Behaviors.

1. Vital Vertex Identification: The behavior is to identify the vital vertices in a

network. The vital vertices are the minimal set of vertices in a network that

cause the greatest network degradation when they are removed. The extent of

network degradation is measured by comparing the cumulative length of the

shortest path for all pairs of vertices and the number of disconnected vertices

before and after the vertices are removed.

This is almost the same as the metric of network degradation in [19]. The

difference lies in counting the number of disconnected vertices. The original

metric did not do this, and only has a single objective. Using a single objective

raises the problem of rating the cost of disconnected vertices. However, making

the metric produce a double objective measure eliminates the ambiguity.

Finding the vital vertices in a network is an NP-Hard problem [19]. The dif-

ficulty of the problem is increased by the fact that the problem information is

only partially observed, each agent only has a partial view of the whole network.

Equations (56-57) measure the network degradation. Equation (58) measures

how concisely the agents can identify the vital vertices.

∑

∀u∀v(shortestpath(u, v) : u, v ∈ C ∩ SS(f) ∧ u 6= v) (56)
∑

∀u∀v(pathexists(u, v) : u, v ∈ C ∩ SS(f) ∧ u 6= v) (57)

|ID(f)| : ID(f) ≡ ID ∩ SS(f) (58)

120

C The container set.

ID The set of vertices identified as being vital vertices.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

2. Intrusion Detection: Intrusion elimination consists of maximizing the number

of correctly identified nodes, Equation (61), and minimizing the number of in-

correctly identified nodes, Equation (62).

1

|ID√|
: ID√ ≡ ID ∩Cc ∩ SS(f) (59)

|IDX | : IDX ≡ ID ∩Cu ∩ SS(f) (60)

Cc The set of compromised containers.

Cu The set of uncompromised containers.

ID The set of containers identified as being compromised.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

3. Enemy Avoidance: Enemy avoidance consists of maximizing the number of safe

SOMAS agents, Equation (61), and minimizing the number of unsafe SOMAS

agents, Equation (62). While it may seem that these two objectives are just the

inverse of each other, that is not the case when the SOMAS swarm can increase

or decrease the number of SOMAS agents.

1

|As|
: As ≡ A ∩Cc ∩ SS(f) (61)

|Au| : Au ≡ A ∩Cu ∩ SS(f) (62)

121

Cs The set of safe containers.

Cu The set of unsafe containers.

A The set of SOMAS agents.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

4. Intrusion elimination: The intrusion elimination behavior is similar to the com-

petition scenario in Section 6. The difference is that the enemy agents do not

try to destroy the network. Instead, the compromise agents merely compromise

and deposit inactive DDoS agents. The SOMAS swarm’s behavior is to make

the number of compromised nodes as small as possible.

|Cc(f)| : Cc(f) ≡ Cc ∩ SS(f) (63)

Cc The set of compromised containers.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

5. DDoS defense: There is only a single objective for this behavior, which is to

maximize the number of targetted nodes that are active at the end of the sim-

ulation.

1

|Cat|
: Cat ≡ Ca ∩Ct ∩ SS(f) (64)

Ca The set of active containers.

Ct The set of targeted containers.

SS(f) The scenario state at the final time step.

| . . . | Denotes set cardinality.

6. Swarm Competition: The behavior is to both delete all enemy agents and pre-

serve all friendly agents. The blue (friendly) objective function is in Equation

(65). It states that the cumulative number of SOMAS agents deleted during

122

the scenario run should be minimized. The red (enemy) objective function is in

Equation (66). It states that the cumulative number of enemy agents deleted

during the scenario run should be maximized.

1
∑

t∈Tt>1

|Ab(t)|
: Ab(t) ≡ Ab ∩ SS(t− 1)− SS(t) (65)

∑

t∈Tt>1

|Ar(t)| : Ar(t) ≡ Ar ∩ SS(t− 1)− SS(t) (66)

Ab The set of friendly agents.

Ar The set of malicious agents.

SS(t) The scenario states at time t.

| . . . | Denotes set cardinality.

7. Network defense: The basic behavior is to maximize the amount of friendly in-

formation delivered to friendly nodes, Equation (67), and minimize the amount

of friendly information sent to malicious nodes, Equation (68). All information

is friendly for the purposes of the scenario.

1
∑

t∈Tt>1

|iB(t)|
: iB(t) ≡ i ∩CB

S ∩ SS(t)− SS(t− 1) (67)

∑

t∈Tt>1

|iR(t)| : {iR(t) ≡ i ∩CR
S ∩ SS(t)− SS(t− 1) (68)

i ∈ A The set of information packets

CB
S The set of friendly receiver containers’ states.

CR
S The set of malicious receiver containers’ states.

SS(t) The scenario states at time t.

| . . . | Denotes set cardinality.

123

T
ab

le
14

:
A

ge
n
t

ty
p
es

Type Sensors Rules Actuators

SOMAS - Chromosome fitness - Weighted rules - Evolve selected chromosome
- Neighbor fitness - Create agent from selected chromosome
- Local agent fitness - Delete agent
- Location and neighborhood aliveness - Change location

- Change self fitness
- Make self chromosome have self fitness
value

Defense - Local agent types - Execute actuators based on types of - Delete agents
local agents
- Execute rest of actuators

Compromise - Local agent types - If location is uncompromised then - Compromise location
- Whether location is compromised compromise it and execute compromise - Create DDoS agent

actuators - Steal information
- Execute actuators based on types of - Corrupt information
local agents - Exchange information with malicious
- Execute rest of actuators agents

DDoS - Local agent types - If local agent has DDoS target then - Send info packets to DDoS targets
read target information
- Execute rest of actuators

DDoS packet - Next hop to destination - If no more hops exist, or at target - Go to next hop
then delete self after time interval - Delete self
- Execute rest of actuators

Sender - Execute actuators - Send info packets to receivers
Receiver - Local agent types - If local agent is info packet then - Increment info counter

increment info counter
DDoS packet - Next hop to destination - If no more hops exist, or at target - Go to next hop

then delete self after time interval - Delete self
- Execute rest of actuators

12
4

Table 15: Metric types

Metric type Measurment

Good info delivery Overall number of info packets to reach
good receivers during simulation

Bad info delivery Overall number of info packets to reach
bad receivers during simulation

Nodes destroyed Total number of nodes no longer alive
at end of simulation

SOMAS agents destroyed Overall number of SOMAS agents destroyed
during simulation

Malicious agents destroyed Overall number of malicious agents
destroyed during simulation

Agent activity Aggregate change of agent count per
location, summed over all locations

Feasibility Whether simulation ran for total number
of steps without running out of memory

Self organization Amount of self organization evident in
simulation history, where the history is
composed of vectors designating a set of
simulation statistics

Table 16: Network types

Type Parameters

Flat {nodes: 50, edges: 150, type: randomly interconnected}
Component {{backbone | nodes: 5, edges: 10, type: fully interconnected},

{component | nodes: 2, edges: 1, type: wheel},
{component | nodes: 5, edges: 8, type: wheel},
{component | nodes: 8, edges: 14, type: wheel},
{component | nodes: 15, edges: 28, type: wheel},
{component | nodes: 23, edges: 44, type: wheel},
{outlier | nodes: 1, edges: 0},
{outlier | nodes: 1, edges: 0}}

5.6 Scenarios

Table 17 gives an overview of the scenarios used in the chromosome evolution.

Tables 14 and 15 list the types of agents and metrics used in the scenarios. For

examples of the network layouts used, see the scenario figures. Figure 16 details a

graph with a large number of network components and Figure 20 details a flat graph.

125

Table 17: Scenario types
Scenario Agents Metrics Network type

All - SOMAS - Minimize activity
- Maximize self organization
- Maximize feasibility
- Minimize number of dead nodes

Vital Element - Minimize marked nodes - Flat
- Maximize gain in shortest path
length
- Maximize gain in number of
disconnected subgraphs

Intrusion Elimination - Compromise - Minimize number of locations - Flat
- DDoS compromised

Enemy Avoidance - DDoS - Minimize number of unsafe - Flat
SOMAS agents
- Maximize number of safe
SOMAS agents

DDoS - DDoS - Minimize number of targets - Flat
- DDoS packets destroyed

- Maximize number of malicious
agents destroyed

Competition - Compromise - Minimize number of SOMAS agents - Flat
- DDoS destroyed
- DDoS packets - Maximize number of malicious

agents destroyed
Information War - Compromise - Maximize amount of friendly - Component

- DDoS infomation delivered
- DDoS packets - Minimize amount of enemy
- Sender information delivered
- Receiver
- Info packets

• Scenario Generalities: For all scenarios except for Info Attack, every node,

except for the outlier nodes, contains a single SOMAS agent at step 0. All

flat graph network layouts are randomly constructed, given a set of parameters.

The random construction takes place by randomly selecting and connecting two

nodes per iteration, with the constraints that only the set number of edges can

be created and the graph must be connected. The component graph network

layouts all have the same topology. The parameters are detailed in Table 16. In

the component based graph, all the components and outliers are connected to

126

Figure 16: Info War scenario

the backbone subgraph by a single link from one of the external nodes on the

wheel.

Each of the scenario figures are an actual snapshot from the swarm visualizer.

Figure 16 gives an overview of what each element in a scenario snapshot means.

1. Vital Element Identification: The vital elements are those elements in the net-

work that cause the most amount of damage to the network with the removal

of the least number of elements. Solving the problem optimally is an NP-Hard

problem [19]. The SOMAS agents find a solution by marking and unmarking

nodes as vital, and the nodes that are marked by the end of the simulation run

are considered vital nodes.

2. Intrusion Elimination: A set of compromise agents randomly travel around the

network compromising nodes and creating DDoS agents. The SOMAS agents

attempt to uncompromise as many nodes as possible.

127

Figure 17: Vital Element scenario

3. DDoS: In the network there are a set of unsafe nodes that the SOMAS agents

attempt to avoid. The more SOMAS agents there are on the safe nodes the

better, and this includes SOMAS agents creating more agents on the safe nodes

and deleting agents from the unsafe nodes.

4. DDoS: In the network there are a set of target nodes that the DDoS agents

attempt to destroy. The SOMAS agents use their capabilities to eliminate as

many of the DDoS agents and packets as possible while also keeping all the

targetted nodes alive.

5. Competition: Compromise agents and SOMAS agents are pitted against each

other. The compromise agents attempt to destroy the network by compromising

nodes and creating DDoS agents, which in turn mount a DDoS attack against

128

Figure 18: Intrusion Elimination scenario

every node on the network. Whenever a node is destroyed, all agents on the node

are removed from the simulation. The SOMAS agents can delete agents they

find and also destroy or bring back up network nodes. However, the SOMAS

agents do not know which agents are friendly and which agents are malicious.

The SOMAS agents have these same capabilities for the rest of the scenarios.

6. Info War: The Info War is the most complex scenario, and combines elements

of most of the other scenarios. The network layout is composed of multiple

subcomponents, instead of being flat. Within the network, there are a set

129

Figure 19: DDoS scenario

of sender and receiver nodes. The sender nodes attempt to continually send

information packets to the receiver nodes.

There are also a number of compromise agents, who begin on nodes situated

outside of the main network. They enter the network, compromised as many

nodes as possible, and create as many DDoS agents as possible. Meanwhile,

they also delete friendly information packets and steal the information and send

it out of the network. The DDoS agents target all the receiver nodes in order

to stop all friendly information traffic.

130

Figure 20: Competition scenario

Successfully completing this scenario requires that the SOMAS swarm use mul-

tiple behaviors from the previous scenarios. First, they must stop the receiver

nodes from being deactivated by the DDoS agents. This is the same behav-

ior that is necessary for the DDoS scenario. Second, the SOMAS agents need

to stop the compromise agents from compromising the network nodes. The

behavior is a combination of the behaviors from the Competition, DDoS, and

Intrusion Elimination scenarios. Additionally, the SOMAS swarm must develop

new behaviors to stop the compromise agents from stealing information.

131

5.7 Summary

This chapter describes how the effectiveness metrics, visualizations, statistical

tests, behaviors, and scenarios are used to evaluate the significance of self organiza-

tion and entangled hierarchies for creating effective SOMAS swarms. The effectiveness

metrics and statistical tests are used to compare different SOMAS swarm types, and

the behaviors and scenarios show the range of capabilities the SOMAS swarm pos-

sesses. The following chapter uses these test elements in the prescribed methodology

to verify and validate, or invalidate the test objectives. This is accomplished both

quantitatively with the tests, and qualitatively with the visualizations.

132

VI. SOMAS Simulation Analysis

6.1 Overview

Using the testing methods discussed in Chapter V, this chapter presents the

results in order to determine whether specified hypotheses based on research objectives

have been falsified or validated (since experimentation cannot verify hypotheses).

Analysis of quantitative statistical results and visualizations is discussed in Section

6.2. Besides confirming or denying the hypotheses the results also describe a few other

items of interest, which are covered in Section 6.3.

6.2 Hypotheses Validation

Table 18: Hypotheses results

Hypothesis Outcome

- Self organization metric improves effec-
tiveness of search Partial success
- Visually identifiable self organization is
evolved Success
- An entangled hierarchy becomes more ef-
fective as the scenario becomes more com-
plex Success

Table 19: Legend of shorthand notation
Notation Description

Non mod Scenario is not modified beyond any changes mentioned in the caption
No evo SOMAS agents do not evolve the chromosomes they carry
No c/d SOMAS agents do not create or delete any of their own kind
Single SOMAS agent chromosomes are evaluated on a single scenario
Multi SOMAS agent chromosomes are evaluated on multiple scenarios
Dest SOMAS agents can destroy network nodes
Non dest SOMAS agents cannot destroy network nodes
w/ destruction SOMAS agents can destroy network nodes
NV SOMAS swarm does not have network node deactivation and activation actuators
NS SOMAS swarm does not use online search
NE SOMAS swarm does not evolve itself, but still uses online search
EV SOMAS swarm uses evolutionary search

6.2.1 Self Organization Metric Improves Effectiveness of Search. The self

organization metric is negatively correlated with a number of objectives:

133

• Maximizing Feasibility

• Minimizing good agent deletion

• Maximizing bad agent deletion

• Maximizing the delivery of information to good receivers

It is positively correlated with:

• Minimizing agent activity

• Minimizing targetted location deactivation

• Maximizing uncompromised nodes

• Minimizing compromised nodes

• Minimizing delivery of information to bad receivers

The correlation of the feasibility metric with the other objectives is the complete

opposite of the self organization metric. This shows that the self organization metric

primarily measures the inverse of feasibility. However, this does not mean that it is

equivalent to the inverse of feasibility, which will be explained in Section 6.3.5.

The reason for this inverse relationship is because with a small number of agents

the simulation history is fairly undifferentiated and long. Thus, the clustering algo-

rithm used to extract the causal pasts (see Section 2.5.4) creates a minimal number

of clusters and there is not very much predictive information that can be potentially

extracted. However, with a large amount of agents, the simulation history is both

irregular and is likely short due to memory overflow. These two influences cause the

clustering algorithm to create a larger number of clusters, increasing the potential

amount of predictive information that can be extracted.

Despite the lack of success optimizing the search using the self organization

metric, self organization is seen in another aspect of the search. The SOMAS offline

search demonstrates a phenomena known as self organized criticality [17]. While

interesting for the possible uses of such a phenomena, it also appears to pull the

134

search out of a local optima. These issues are discussed more completely in Section

6.3.5.

Therefore, the first hypothesis is partially successful.

6.2.2 Visually Identifiable Self Organization is Evolved. The visualization

produces a simple network topology showing the types of agents at each node. Thus,

the visualization can only show self organized behavior in terms of agent creation, dele-

tion, fitness values, and movement. The SOMAS framework evolves various emergent

behaviors, but they vary in the amount of self organization also exhibited.

The simplest strategy that emerges in the Information War scenario is that of

doing nothing. Amongst the SOMAS swarms that can deactivate network nodes, a

common strategy is to deactivate nodes until an objective is met, whether that means

deleting all enemy agents or stopping a DDoS attack. This deactivation is carried out

either by directly deactivating nodes, or by creating so many agents on a node that the

node automatically deactivates. However, this behavior does not show organization

amongst the swarm agents.

A less destructive behavior in the Information War Scenario is to restart the

DDoS’d nodes. The enemy DDoS agents have a specific order of targets they are

meant to deactivate, and will not proceed to the next target as long as any previous

targets are active. By reactivating the DDoS’d nodes, the DDoS agents are kept from

deactivating the other receiver nodes.

Besides these simplistic emergent behaviors, there are also emergent behaviors

that exhibit greater organization in the swarm. In the Competition scenario there is a

strategy that produces swarms that move as groups around the network, deactivating

nodes. The swarm is able to halt the compromising of network nodes and consequent

DDoS attack against the network.

There are solutions in the Information War scenario where the swarm will acti-

vate a network destruction and creation process when under attack by DDoS agents.

135

The agents will start reproducing very rapidly and DoSing nodes themselves, as well

as restarting deactivated nodes. Once this behavior begins in one component of the

network, the behavior rapidly spreads itself to the other components. Unfortunately,

the behavior eventually leads to receiver nodes being destroyed and restarted, which

limits the good information flow. However, the behavior also can delete sender nodes,

and this is beneficial insofar as the amount of information that can be stolen is limited.

The reason why this behavior evolves is because it both restarts nodes that

have been DDoS’d, thus ensuring enemy DDoS agents remain fixated on one target,

and deactivate the bottlenecks in the network, which keeps the malicious agents from

compromising network nodes in the network components and creating new DDoS

agents. Thus, the SOMAS agents are creating a decoy for the DDoS agents.

These behaviors verify the second hypothesis, it is consequently successful.

This is a verification instead of only a validation because the SOMAS framework

has demonstrated this capability.

6.2.3 Entangled Hierarchy More Effective as Scenario Becomes More Com-

plex. The statistical tests, which are found in Appendix B, demonstrate that as

the scenario becomes more complex, swarms capable of more complex and influential

entangled hierarchies become more effective than less capable swarms. As described in

Table 12 in Section 5.2 the the scenarios are categorised according to the complexity

of the network layout, and whether the environments and agents are static/dynamic.

The figures in appendix B give a visual representation of how the categories affect

the search landscapes. As shown, the online search swarms produce a wider variety

of objective values in the offline search space. This suggests these swarms are able to

acquire a greater number of building blocks and construct better solutions.

The results plots in Appendix B show that in almost all network scenarios,

swarms with online search (EV and NE swarms) decisively outperform swarms that

lack online search. Not only are online search swarms more capable than non searching

136

swarms in more complex scenarios, the searching swarms are more capable almost

across all scenarios.

This successfully validates the third hypothesis in Table 18, so it is successful.

While the use of online search explains why the EV and NE swarms do better

than the NS swarm, it does not explain why the EV swarm outperforms the NE swarm

in only certain scenarios. Contrary to expectations, the increase in the EV swarm’s

effectiveness does not strictly follow the increase in scenario complexity, though such

a trend is evident.

The distinguishing feature is that the scenarios where the EV swarm is more

effective require a greater specificity of behavior than the scenarios where the NE

swarm is more effective. For instance, even though the complexity of the Competition

scenario is greater than the complexity of the DDoS scenario, the actual activity in

the Competition scenario is much more homogeneous. In the Competition scenario it

isn’t important to perform specific actions in specific portions of the network, since the

elimination of enemy agents is worth the same amount regardless of network location.

Thus, the same swarm behavior is generally effective regardless of swarm location.

In the DDoS scenario the swarm has to protect specific targets, so the swarm

needs to use different behaviors for different parts of the network. Thus, the swarm

in this scenario needs to be capable of greater specificity in its behavior. The same

pattern can be seen with the Information War scenario. When the swarm has node

deactivation and activation actuators the EV swarm is more effective. This is because

the swarm defends the network better if it focusses on reactivating the nodes targetted

by DDoS agents, as explained in the previous Section 6.2.2. On the other hand,

without these actuators, the swarm cannot be as specific in its behavior, so the greater

capability for specificity is no longer needed.

137

Figure 21: Pareto fronts comparing evolution with and without network destruction,
part 1

InfoWarScenario

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

InfoWarScenario_NV

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

6.3 Secondary Testing and Analysis

Besides the hypotheses for testing the research objectives, a number of other

tests and analysis are carried out for problem exploration. As noted with swarm

138

Figure 22: Pareto fronts comparing evolution with and without network destruction,
part 2

InfoWarScenario

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

InfoWarScenario_NV

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

behavior effectiveness, the ability of the swarm to destroy the network significantly

changes whether swarm evolution is preferable or not. More tests are carried out

139

Figure 23: Pareto fronts comparing evolution with and without network destruction,
part 3

InfoWarScenario

F
ea

si
bi

lit
y

ActivitySelf organization

InfoWarScenario_NV

F
ea

si
bi

lit
y

ActivitySelf organization

between swarms capable of destruction and swarms incapable of destruction to more

precisely determine there respective effectiveness.

140

During the discussions in the previous chapters, it is mentioned that the swarm

behaviors can be composed of sub behaviors. This claim is tested by evaluating swarm

chromosomes on multiple scenarios during the course of the search to see whether

simpler scenarios can be combined to create more effective complex behavior.

Further analysis is carried out on the accomplished tests to look for other char-

acteristics besides those originally being tested. Interesting results are found, such

as evidence for the efficacy of differential evolution, objectives from disparate scenar-

ios working together to overcome a royal road, and the existence of self organized

criticality during the search process.

6.3.1 Effectiveness of Network Destruction. Generally, the swarms with

node deactivation and activation actuators decisively outperforms the swarms that

do not have these actuators, as shown in Appendix C. However, the exception is in

the case of the two scenarios where specificity of action is not significantly required

(Competition and Intrusion Elimination scenarios) and with the swarm less capable

of specific action (non searching swarm). Thus, the results corroborate with the

conjecture from the previous experiments that the online search swarms are so effective

because they are capable of more specific behavior.

6.3.2 Multi Scenario Evolution. For the DDoS and Information War scenar-

ios using multiple scenarios for evolving a chromosome works much better than using

a single scenario. For others, the results are ambiguous. These results are shown in

Appendix D. The cause is most likely the dependency between scenarios. The set of

behaviors necessary for success in the Competition and Intrusion Elimination scenar-

ios is a subset of the behaviors for the Info War and DDoS scenarios, as explained

in Section 6. Thus, all progress in the former scenarios helps the latter, but progress

in the latter does not necessarily help the latter. In fact, the behaviors may become

too complex to benefit the simpler scenarios. Figures 24, 25, 26, and 27 compares the

exploration of single and multi-scenario evolution. For the Information War plot, the

141

Figure 24: Pareto fronts comparing explorativeness of single and multi-scenario evo-
lution, part 1

CompetitionScenario_NV

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

MultiScenario_Mean

B
ad

 a
ge

nt
s

de
le

te
d

(C
om

p)

ActivityGood agents deleted (Comp)

multi-scenario results converge clearly better than those of the standard scenario. In

the others, it is much harder to judge, even in the case of the DDoS scenario.

142

Figure 25: Pareto fronts comparing explorativeness of single and multi-scenario evo-
lution, part 2

DDoSScenario

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

MultiScenario_Mean

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

6.3.3 Evidence of Differential Evolution Usefulness. In a couple of the sce-

narios, there seem to be two primary strategies that shape the direction of evolutions,

see Figure 28. Even though in MOPs there is no guarantee a pattern in the geno-

143

Figure 26: Pareto fronts comparing explorativeness of single and multi-scenario evo-
lution, part 3

IntrusionEliminationScenario

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

MultiScenario_Mean

B
ad

 a
ge

nt
s

de
le

te
d

(I
nt

r)

ActivityGood agents deleted (Intr)

type implies a pattern in the phenotype, such consistency is suggestive that there is.

If this is the case, then these scenarios can benefit from differential evolution using

real values instead of bit strings. Differential evolution is a combination of gradient

144

Figure 27: Pareto fronts comparing explorativeness of single and multi-scenario evo-
lution, part 4

InfoWarScenario

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

MultiScenario_Mean

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

descent and genetic algorithms, as described in [125]. By finding the rate of change

between the objectives of chromosomes, differential evolution may be able to adapt

to the patterns in the plots and find the optimal points much more quickly.

145

Figure 28: Two strategies for intrusion elimination

IntrusionEliminationScenario_NE

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

MultiScenario_Mean

G
oo

d
ag

en
ts

 d
el

et
ed

 (
In

tr
)

Self organizationFeasibility

Nowak researched the use of differential evolution for evolving self organized

swarm behaviors, and demonstrated its superiority over neural networks for his prob-

lem domain [89]. Given the similarity between the his work and this thesis it is

146

possible differential evolution can follow the linear patterns in the pareto plots and

increase the search’s convergence rate, while retaining the same level of exploration.

Figure 29: Independent and interacting objectives

MultiScenario_Mean

B
ad

 a
ge

nt
s

de
le

te
d

(I
nt

r)

Good agents deleted (Comp)Bad agents deleted (Comp)

MultiScenario_Mean

B
ad

 a
ge

nt
s

de
le

te
d

(I
nt

r)

Targets deletedDDoS attackers deleted

147

6.3.4 Objective Dependencies In Multi-Scenario Evolution. While it is not

surprising when objectives from different scenarios are independent, it is strange when

the addition of a foreign objective to a PFknown plot results in objectives from the

same scenario becoming independent as well, especially when ostensibly the foreign

objective should be the same as one of the local objectives. Yet, this is shown in

the first plot of Figure 29. The literal meaning is that improvement in the foreign

objective, of deleting more bad agents, is uncorrelated with improvement in either of

the other two objectives. The main difference between the two scenarios from which

the objectives are derived is that in the Competition scenario the DDoS agents that

the rogue agents create can destroy the network, and consequently destroy the SOMAS

agents, whereas the SOMAS agents are under no threat in the Intrusion Elimination

scenario. So, the independence may be due to SOMAS agents not needing to protect

themselves.

The second plot shows that foreign objectives are not always independent of

local objectives. There is a clear interaction between the number of targets deleted by

DDoS agents and the number of intruders deleted. This makes sense, because in both

cases being able to delete DDoS agents is beneficial. However, it is again surprising

that the DDoS attackers deleted is fairly independent of bad agent deletions.

The discrepancy is possible a result of the difference in ideal strategy between

the scenarios. In the Intrusion Elimination scenario a node is cleaned from intruders

if it is destroyed, meaning a very simple and effective strategy is to merely destroy

all the nodes in the network. Consequently, most chromosomes probably localize on

variants of this strategy, resulting in different numbers of target nodes being destroyed.

Such a strategy does not work well in the DDoS scenario since the number of targets

destroyed would be maximized. Thus, the SOMAS agents need a more sophisticated

approach to rid the network of DDoS attackers, and the strategies for malicious agent

deletion between the two scenarios do not correlate. Visualizations of behaviors from

these scenarios show validity for this hypothesis.

148

Figure 30: Objective attractor

MultiScenario_Mean

G
oo

d
in

fo
rm

at
io

n
de

liv
er

ed

ActivityDDoS attackers deleted

Figure 30 shows two interesting aspects of multi-scenario evolution. First, some-

thing of a royal road exists in combination of the Info War and DDoS objectives; they

are inversely correlated until a drop off point. If the activity objective were not in-

cluded, then the tradeoff between the two would hamper evolving chromosomes for

either scenario. But, the addition of the activity objective pulls the path over the

royal road’s cliff, ending in an attractor right around the optimal solution. Thus,

synergy is created by grouping objectives from different scenarios.

The second interesting characteristic is the attractor. The previous plot of the

independent objectives in figure 29 and the plot of the royal road show attractors

in the solution space. These do not seem to be prevalent in the PFknown plots for

single scenario evolution. Perhaps this is due to the commonalities between the ideal

behaviors in the different scenarios. These commonalities will amplify the success of

certain chromosomes since their success translates to most of their objectives.

6.3.5 Self Organized Criticality. Throughout many of the scenarios, the

PFknown plot shows an intriguing gap in patterns of dominant chromosomes. Chromo-

149

Figure 31: Pareto fronts showing objective relationships for self organized criticality,
part 1

CompetitionScenario_NV_NCDA

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NV_NCDA

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

some evaluation produces fairly tight variances along a path up to a certain midway

point, then the variance becomes large very rapidly and certain sections along the

path do not contain any values. By comparing the different objective plots, it is clear

150

Figure 32: Pareto fronts showing objective relationships for self organized criticality,
part 2

CompetitionScenario_NV_NCDA

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

CompetitionScenario_NV_NCDA

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

that this relationship holds between the feasibility, self organization, and bad agent

deletion. This pattern does not also hold between activity and good agent deletion

151

because the number of good agents is static if they are not deleted while the number

of bad agents increases if they are not deleted.

Figure 33 shows that the gap disappears when non creating agents are compared

to creating agents, but it shows up again when both kinds of agents are creative. The

question is, why is there a gap at the midway point? Due to the chaos created by

many agents, it might be assumed that the greatest variance would be found at the

path end with the most agent activity.

The discrepancy is explained by the concept of self organized criticality [17].

In self organized systems, self organization reaches its highest level at a point right

before chaos, where most of the system’s energy levels are filled. Thus, a disturbance

in the system results in an avalanche of energy dissipation.

Since the system is so close to chaos, yet is very well ordered at the same time,

there is great potential for a variety of behaviors to emerge. However, when the system

is not very self organized, due to singificant chaos or simple behavior, there are not

many new behaviors that can develop. Consequently, the greatest range of behavior,

and thus the greatest range of objective values, will be found around the point of self

organized criticality. Self organized criticality can even lead to new regions of the

solution space that would not otherwise have been reached, as in Figure 34.

There are a couple uses for this section of self organization. First, it is useful

for finding effective behavior. Figure 34 shows how criticality can benefit the EA’s

search. Before the point of criticality, the path of the objective values shows an inverse

correlation. Evidently, there is an effective strategy that is restricting the search. The

point of criticality allows the search to find a new strategy that introduces a correlation

between the objectives, leading to an attractor much closer to the optimal value.

Second, it can be used as a feedback mechanism for the self organization met-

ric. The plots show that the metric is not accurate, since the optimal level of self

organization is not found at the point of criticality. During the development of a self

152

organization metric, its effectiveness can be measured by determining how closely it

identifies the criticality point.

6.4 Summary

The test results for hypotheses to validate the research objectives are analyzed

to see whether the hypotheses are valid. For the first hypothesis, that the self organi-

zation metric optimizes the search, it is shown that the self organization metric does

not succeed in totally optimizing the search. It correlates positively with some ob-

jectives and negatively with other objectives. At the same time, swarms are evolved

that do exhibit self organized behavior when visualized.

The entangled hierarchy hypothesis is successfully validated. The test results

show that as the scenarios become more complex, the swarms with entangled hier-

archies are more effective than those that do not have entangled hierarchies, or have

entangled hierarchies to a lesser extent. Additionally, with more entangled hierarchies

the swarms are capable of more specific behaviors.

Based on the first set of testing and analysis, new tests are run to investigate

features of the SOMAS capabilities, and more analysis is done on the tests to identify

other characteristics. In the testing of entangled hierarchies, it is noticed that the

swarm’s ability to deactivate and activate the network significantly affects whether

an entangled hierarchy is a benefit. Further tests show that swarms that use online

evolution without network deactivation and activation actuators fare much worse

than swarms that can destroy the network. Again, this result is linked to the greater

capability for specific behavior exhibited by the swarms with more of an entangled

hierarchy.

Another aspect of SOMAS that is tested is whether using sub-behaviors in

the objective space can evolve more capable behaviors. However, this experiment

does not show success in evolving the behaviors, though some of the sub-behaviors

are evolved more effectively. The plots do show objectives from different behaviors

153

working together to improve the search, so there is evidence that the technique may

work. There is just no conclusive evidence that the technique is universally effective.

When the results are analyzed for other characteristics, a few new findings are

observed. There is evidence that differential evolution may work well in the SOMAS

problem domain. Even though the self organization metric did not prove especially

useful, the Pareto plots of the search show that self organized criticality plays an

important role in the optimization of certain objectives. All of these results pave the

way for important conclusions and extensive future research. The conclusions and

future research are covered in the next chapter.

154

Figure 33: Evidence that self organized criticality depends on agent creation

CompetitionScenario_NV_NCDA

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NV_NE

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NV

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

155

Figure 34: Self organized criticality leading to optimal

CompetitionScenario_NV

F
ea

si
bi

lit
y

ActivityBad agents deleted

156

VII. Conclusions and Future Work

7.1 Summary of Research

Overall, the objectives in Chapter I have been achieved. Based on the back-

ground material in Chapter II, the SOMAS architecture is successfully created in

Chapters III and IV. The self organization metric correlates with certain behavioral

objectives and guides the search towards a region of self organized criticality. How-

ever, the metric does not serve to totally optimize the objective attainment since it is

inversely correlated with some SOMAS behavioral objectives. Finally, the effective-

ness of a self evolving swarm on a more complex scenario has been satisfied. These

results are shown with the tests and results analysis in Chapters V and VI.

The experiments in Chapter VI show self organization does play an significant

role in the search process for effective SOMAS, see Figure 5, through self organized

criticality. While the extremes of the search generally have small variance, the mid-

points of certain scenarios contain potentially chaotic regions that produce both good

and bad chromosomes. Their high level of exploration can also lead to areas of the

search space that may not have been found otherwise. These chaotic regions are

explained by the theory of self organized criticality. However, the metric used to

measure self organization should be developed further.

While the experimentation with self organization is not totally conclusive, the

experiments with entangled hierarchies in Chapter VI, see Figure 10, show definitive

results. When swarms can evolve online they are much more effective in complex

scenarios than swarms that cannot evolve, as is hypothesized. Since online evolution

is adaptation through the use of entangled hierarchies, the success of these swarms

is an indication that entangled hierarchies provide the needed flexibility for network

security management.

The following lists the objectives from Section 1.2 and whether they have been

successfully accomplished. Multi-objective non-parametric testing and analysis sta-

tistically validates objective hypotheses for objectives 2 and 3. Pareto plots show the

157

search history for feature identification and correlation, swarm simulations visualize

behaviors for observational verification of self organization in Sections 6.2 and 6.3.

Objective 1. Create a robust simulation framework for evolving self organizing multi-agent

systems (SOMAS)

Success: Using the MASON and PISA packages, and customized coding,

SOMAS swarms are effectively evolved and evaluated.

Objective 2. Evaluate effectiveness of self organization for accomplishing objectives

Partial success: The self organization metric does not result in total opti-

mization for all behavioral objectives. However, the search exhibits useful self

organized criticality. Chromosomes are evolved that exhibit clearly self orga-

nized behavior when visualized. The latter two pieces of evidence show that self

organization has utility for SOMAS.

Objective 3. Evaluate effectiveness of entangled hierarchies for accomplishing objectives

Success: Experimental results show that as the scenarios become more com-

plex, entangled hierarchies become more effective.

However, these particular behaviors only demonstrate SOMAS feasibility and

are not totally comprehensive of the system’s capability. SOMAS can be applied to a

wide variety of other network security problems, such as intrusion detection, network

defense, hiding high value targets, etc. as well as issues not only restricted to network

defense. Some of these areas of exploration are described in the following section,

along with other methods of improving SOMAS.

7.2 Future Research

There are numerous potential research projects motivated by this investigation.

They range from the theoretical to particular applications.

7.2.1 SOMAS Improvements.

158

1. The software needs to be written with better software engineering practices. It

needs to be better organized and incorporate the formal model checking algo-

rithm.

2. The offline evolutionary algorithm can adapt itself to the landscape by encoding

MOEA paramaters in the agent chromosome, similar to the technique used in

adaptive evolutionary strategies. However, if the landscape is dynamic then the

adaptive algorithm may not be able to adapt to the dynamics, especially if they

are noncyclic, and thus may be worse than just Monte Carlo sampling.

3. Since artificial intelligence has not generated any kind of mechanism resembling

human intelligence, it is crucial to incorporate humans into the SOMAS pro-

duction loop. As an analogy, computer systems are autistic savants, they are

very good at very specific tasks, but are not very good when required to take in

the larger picture. Humans, on the other hand, sometimes are autistic savants,

but more generally they are more effective at large picture thinking. Thus, the

best combination is to use the SOMAS framework as intelligence augmentation,

focussing on how to best relay the necessary information for the operator to see

the big picture and then order SOMAS to accomplish a specific task.

4. Currently, SOMAS just executes serially. However, since the bottleneck in evo-

lutionary algorithms tends to be the fitness function, they are an embarrassingly

parallel problem. Great gains in execution speed are possible by decomposing

SOMAS into a grid computing solution.

5. Genetic programming can be incorporated into SOMAS by making parts of the

chromosome represent an instruction set for a programming language. Since

using only genetic programming can require a large amount of time to generate

agent rules, a hybrid approach is possible where genetic programming is used to

evolve an actuator set and the existing genetic algorithm continues to produce

the weights and parameters for the sensors and rules.

159

6. The difference between mechanically and naturally created artifacts and inten-

tionally created artifacts [33] based on fractal geometry can be used to develop

a search heuristic that tunes search parameters based on how much human

intentional development influences the search landscape.

7. The technique used in the self organization metric to extract the predictive

information in a history can also be used as a form of differential evolution.

Essentially, an operator uses the predictive information to predict where an-

other good solution may lie in the solution space. The predictive information

is extracted from the generative history maintained by keeping track of which

chromosomes have produced each other.

8. Incorporate a lifespan into the swarm, such that very complex swarm behaviors

have a short lifespan and a low likelihood of becoming chaotic, and a simple

swarm behavior has a longer lifespan since it is safer.

9. Add the offline search and simulation to the containers. Thus, the containers

can develop models directly from the network they reside on and can farm out

chromosomes to each other for parallelized SOMAS evolution. The advantage

of this approach over an offline search that is separate from the target network

is a shorter response time and a smaller data transfer.

10. Allow SOMAS agents to install containers themselves. Combined with the pre-

vious item, SOMAS is self sufficient in that it does not require any kind of

home-base for generation.

11. Formalize and simplify the SOMAS model. For example, the agents can be for-

malized to sets of rules and parameters within the container’s rule and parameter

sets. This helps reduce the difference between container and agent, allowing the

model to be more flexible. Additionally, once the agents are represented as a

set of rules, then the problem domain as a whole can be formalized very rigor-

ously and concisely. Essentially, the domain consists of a set of containers and

regions (containers within 1 hop of a container). The problem is to find the

160

highest ordered state transition function (as opposed to a path to goal states).

A container can change its state and change the transition function in its re-

gion, though it cannot directly affect the states of other containers. Transition

functions are defined by rulesets. Thus, since agents are rulesets, they define

the transition functions for containers and regions. The problem becomes that

of finding the necessary rulesets to create the highest ordered state transition

function.

12. Behaviors can be programmed into the SOMAS agents a priori. For example,

if the agents need to visit waypoints in the network each agent can have a list

of nodes that it needs to visit. The benefit of this approach is that necessary

behaviors that are already known do not have to be searched for by the swarm,

and the search process can focus on the unknown aspects of the swarm behavior.

7.2.2 Testing.

1. Once ready for real world use, the self organized and entangled hierarchy metrics

must be tested on very complex systems that do not have an effective means of

control.

2. The entangled hierarchy metric should be used as an objective function, and

compared with a priori constructed hierarchical swarms and swarm evolved

without the entangled hierarchy objective function, to investigate more precisely

the effect of entangled hierarchies.

3. The results can be investigated more fully by performing ANOVA tests to de-

termine how self organization affects different objectives, and by comparing the

Pareto fronts produced with and without the self organization metric. In order

to do this, the metric for self organization needs to be developed so it is more

accurate.

4. There are a great range of security scenarios that still need to be investigated.

For instance, a network warfare competition scenario would be very interesting.

161

In this scenario, there are 2 or more different agent sets that all possess territory

on a network. Coevolution is used to evolve the best competitive agent swarm.

Another area of exploration for network objectives is operations effictiveness.

This includes capabilities such as efficient routing, information availability, pro-

viding services, etc.

Finally, continuing on the theme of human involvement discussed in the last

section, it would be interesting to use human produced scenarios. One simple

way of doing this is to use the Amazon c© Mechanical Turk c© service, where

users submit a job and people all around the world complete it for a minimal

fee.

5. A greater range of statistics are possible for the objective values than just the

average of the simulation runs. For instance, in order to take both the number

of runs and the variance into account, the confidence interval can be used.

Including the number of runs in this way is useful since it allows the run count

to be varied. For instance, the simulation run count can be increased until

the chromosome produces a small enough confidence interval, or a run limit is

passed. The statistics from this technique can also be used as an entropy metric

for the general population to guage swarm stability.

7.2.3 Analysis.

1. While in multi-objective problems there is no guarantee that the solution space

maps to the objective space in a regular manner, the Pareto plots suggest that

this may be the case in certain instances. If so, then such a mapping can pro-

vide insight for creating specialized variation operators to exploit the mapping’s

pattern.

2. The Pareto plots do detail useful information about the search space. However,

a sparse plot can be difficult to interpret. Using a non convex hull surfaces for

PFKnown (i.e. not Delaunay triangulation) can make this visualization easier.

162

3. Self organization can be visually highlighted by making the self organized as-

pects of the swarm stand out more than the aspects that are not self organized.

This technique is used in [117].

163

Appendix A. Swarm Search Experiments (Pareto front plots)

This appendix shows Pareto plots for each tested scenario. Since each scenario has

more than 3 objectives, the Pareto plots are of a subset of the objectives in each

scenario.

Numbered objectives in each scenario:

• DDoSScenario

1. Activity

2. Targets taken down

3. DDos agents deleted

4. Self organization

5. Feasibility

• EnemyAvoidanceScenario

1. Activity

2. Safe somas agents

3. Unsafe somas agents

4. Self organization

5. Feasibility

• IntrusionEliminationScenario

1. Activity

2. Locations not compromised

3. Locations compromised

4. Self organization

5. Feasibility

• CompetitionScenario

164

1. Activity

2. Good agent deletion count

3. Bad agent deletion count

4. Self organization

5. Feasibility

• InfoWarScenario

1. Activity

2. Good info

3. Bad info

4. Self organization

5. Feasibility

165

Figure 35: EnemyAvoidanceScenario
EV NE NS

EnemyAvoidanceScenario_EV_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

Objectives 1, 2, and 3
EnemyAvoidanceScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

Objectives 1, 2, and 4
EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

Objectives 1, 2, and 5
EnemyAvoidanceScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

Objectives 1, 3, and 4
EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

Objectives 1, 3, and 5

166

Figure 36: EnemyAvoidanceScenario
EV NE NS

EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

ActivitySelf organization

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

ActivitySelf organization

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

ActivitySelf organization

Objectives 1, 4, and 5
EnemyAvoidanceScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

Objectives 2, 3, and 4
EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

Objectives 2, 3, and 5
EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

Objectives 2, 4, and 5
EnemyAvoidanceScenario_EV_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NE_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NS_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

Objectives 3, 4, and 5

167

Figure 37: EnemyAvoidanceScenario NV
EV NE NS

EnemyAvoidanceScenario_NV_EV_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

U
ns

af
e

S
O

M
A

S
 a

ge
nt

s

ActivitySafe SOMAS agents

Objectives 1, 2, and 3
EnemyAvoidanceScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivitySafe SOMAS agents

Objectives 1, 2, and 4
EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

ActivitySafe SOMAS agents

Objectives 1, 2, and 5
EnemyAvoidanceScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityUnsafe SOMAS agents

Objectives 1, 3, and 4
EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

ActivityUnsafe SOMAS agents

Objectives 1, 3, and 5

168

Figure 38: EnemyAvoidanceScenario NV
EV NE NS

EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

ActivitySelf organization

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

ActivitySelf organization

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

ActivitySelf organization

Objectives 1, 4, and 5
EnemyAvoidanceScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Safe SOMAS agentsUnsafe SOMAS agents

Objectives 2, 3, and 4
EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

Safe SOMAS agentsUnsafe SOMAS agents

Objectives 2, 3, and 5
EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

Safe SOMAS agentsSelf organization

Objectives 2, 4, and 5
EnemyAvoidanceScenario_NV_EV_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NV_NE_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

EnemyAvoidanceScenario_NV_NS_ibea

F
ea

si
bi

lty

Unsafe SOMAS agentsSelf organization

Objectives 3, 4, and 5

169

Figure 39: IntrusionEliminationScenario
EV NE NS

IntrusionEliminationScenario_EV_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

IntrusionEliminationScenario_NE_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

IntrusionEliminationScenario_NS_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

Objectives 1, 2, and 3
IntrusionEliminationScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

IntrusionEliminationScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

IntrusionEliminationScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

Objectives 1, 2, and 4
IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

Objectives 1, 2, and 5
IntrusionEliminationScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

IntrusionEliminationScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

IntrusionEliminationScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

Objectives 1, 3, and 4
IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

Objectives 1, 3, and 5

170

Figure 40: IntrusionEliminationScenario
EV NE NS

IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
IntrusionEliminationScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

Objectives 2, 3, and 4
IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

Objectives 2, 3, and 5
IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

Objectives 2, 4, and 5
IntrusionEliminationScenario_EV_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

IntrusionEliminationScenario_NE_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

IntrusionEliminationScenario_NS_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

Objectives 3, 4, and 5

171

Figure 41: IntrusionEliminationScenario NV
EV NE NS

IntrusionEliminationScenario_NV_EV_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NE_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NS_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

Objectives 1, 2, and 3
IntrusionEliminationScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

Objectives 1, 2, and 4
IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

Objectives 1, 2, and 5
IntrusionEliminationScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

IntrusionEliminationScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

IntrusionEliminationScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

Objectives 1, 3, and 4
IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

Objectives 1, 3, and 5

172

Figure 42: IntrusionEliminationScenario NV
EV NE NS

IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
IntrusionEliminationScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

Objectives 2, 3, and 4
IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

Objectives 2, 3, and 5
IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

Objectives 2, 4, and 5
IntrusionEliminationScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

IntrusionEliminationScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

IntrusionEliminationScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

Objectives 3, 4, and 5

173

Figure 43: DDoSScenario
EV NE NS

DDoSScenario_EV_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

DDoSScenario_NE_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

DDoSScenario_NS_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

Objectives 1, 2, and 3
DDoSScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

DDoSScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

DDoSScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

Objectives 1, 2, and 4
DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

Objectives 1, 2, and 5
DDoSScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

DDoSScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

DDoSScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

Objectives 1, 3, and 4
DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

Objectives 1, 3, and 5

174

Figure 44: DDoSScenario
EV NE NS

DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
DDoSScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

DDoSScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

DDoSScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

Objectives 2, 3, and 4
DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

Objectives 2, 3, and 5
DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

Objectives 2, 4, and 5
DDoSScenario_EV_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

DDoSScenario_NE_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

DDoSScenario_NS_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

Objectives 3, 4, and 5

175

Figure 45: DDoSScenario NV
EV NE NS

DDoSScenario_NV_EV_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

DDoSScenario_NV_NE_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

DDoSScenario_NV_NS_ibea

D
D

oS
 a

tta
ck

er
s

de
le

te
d

ActivityTargets deleted

Objectives 1, 2, and 3
DDoSScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

DDoSScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

DDoSScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityTargets deleted

Objectives 1, 2, and 4
DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityTargets deleted

Objectives 1, 2, and 5
DDoSScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

DDoSScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

DDoSScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityDDoS attackers deleted

Objectives 1, 3, and 4
DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityDDoS attackers deleted

Objectives 1, 3, and 5

176

Figure 46: DDoSScenario NV
EV NE NS

DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
DDoSScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

DDoSScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

DDoSScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Targets deletedDDoS attackers deleted

Objectives 2, 3, and 4
DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Targets deletedDDoS attackers deleted

Objectives 2, 3, and 5
DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Targets deletedSelf organization

Objectives 2, 4, and 5
DDoSScenario_NV_EV_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

DDoSScenario_NV_NE_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

DDoSScenario_NV_NS_ibea

F
ea

si
bi

lit
y

DDoS attackers deletedSelf organization

Objectives 3, 4, and 5

177

Figure 47: CompetitionScenario
EV NE NS

CompetitionScenario_EV_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NE_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NS_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

Objectives 1, 2, and 3
CompetitionScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

CompetitionScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

CompetitionScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

Objectives 1, 2, and 4
CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

Objectives 1, 2, and 5
CompetitionScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

CompetitionScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

CompetitionScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

Objectives 1, 3, and 4
CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

Objectives 1, 3, and 5

178

Figure 48: CompetitionScenario
EV NE NS

CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
CompetitionScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

CompetitionScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

CompetitionScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

Objectives 2, 3, and 4
CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

Objectives 2, 3, and 5
CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

Objectives 2, 4, and 5
CompetitionScenario_EV_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

CompetitionScenario_NE_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

CompetitionScenario_NS_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

Objectives 3, 4, and 5

179

Figure 49: CompetitionScenario NV
EV NE NS

CompetitionScenario_NV_EV_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NV_NE_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

CompetitionScenario_NV_NS_ibea

B
ad

 a
ge

nt
s

de
le

te
d

ActivityGood agents deleted

Objectives 1, 2, and 3
CompetitionScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

CompetitionScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

CompetitionScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood agents deleted

Objectives 1, 2, and 4
CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityGood agents deleted

Objectives 1, 2, and 5
CompetitionScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

CompetitionScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

CompetitionScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad agents deleted

Objectives 1, 3, and 4
CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityBad agents deleted

Objectives 1, 3, and 5

180

Figure 50: CompetitionScenario NV
EV NE NS

CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
CompetitionScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

CompetitionScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

CompetitionScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good agents deletedBad agents deleted

Objectives 2, 3, and 4
CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedBad agents deleted

Objectives 2, 3, and 5
CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good agents deletedSelf organization

Objectives 2, 4, and 5
CompetitionScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

CompetitionScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

CompetitionScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Bad agents deletedSelf organization

Objectives 3, 4, and 5

181

Figure 51: InfoWarScenario
EV NE NS

InfoWarScenario_EV_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

InfoWarScenario_NE_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

InfoWarScenario_NS_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

Objectives 1, 2, and 3
InfoWarScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

InfoWarScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

InfoWarScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

Objectives 1, 2, and 4
InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

Objectives 1, 2, and 5
InfoWarScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

InfoWarScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

InfoWarScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

Objectives 1, 3, and 4
InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

Objectives 1, 3, and 5

182

Figure 52: InfoWarScenario
EV NE NS

InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
InfoWarScenario_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

InfoWarScenario_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

InfoWarScenario_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

Objectives 2, 3, and 4
InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

Objectives 2, 3, and 5
InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

Objectives 2, 4, and 5
InfoWarScenario_EV_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

InfoWarScenario_NE_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

InfoWarScenario_NS_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

Objectives 3, 4, and 5

183

Figure 53: InfoWarScenario NV
EV NE NS

InfoWarScenario_NV_EV_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

InfoWarScenario_NV_NE_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

InfoWarScenario_NV_NS_ibea

B
ad

 in
fo

rm
at

io
n

de
liv

er
ed

ActivityGood information delivered

Objectives 1, 2, and 3
InfoWarScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

InfoWarScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

InfoWarScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityGood information delivered

Objectives 1, 2, and 4
InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityGood information delivered

Objectives 1, 2, and 5
InfoWarScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

InfoWarScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

InfoWarScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

ActivityBad information delivered

Objectives 1, 3, and 4
InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivityBad information delivered

Objectives 1, 3, and 5

184

Figure 54: InfoWarScenario NV
EV NE NS

InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

ActivitySelf organization

Objectives 1, 4, and 5
InfoWarScenario_NV_EV_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

InfoWarScenario_NV_NE_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

InfoWarScenario_NV_NS_ibea

S
el

f o
rg

an
iz

at
io

n

Good information deliveredBad information delivered

Objectives 2, 3, and 4
InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good information deliveredBad information delivered

Objectives 2, 3, and 5
InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Good information deliveredSelf organization

Objectives 2, 4, and 5
InfoWarScenario_NV_EV_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

InfoWarScenario_NV_NE_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

InfoWarScenario_NV_NS_ibea

F
ea

si
bi

lit
y

Bad information deliveredSelf organization

Objectives 3, 4, and 5

185

Appendix B. Swarm Search Experiments (Statistics plots)

Figure 55: Interpreting results diagrams

1 2 3

1
2

3

Better

W
or

se

Each grid cell is the p-value of a significance test. If the cell is completely black,
then the a value will have to have been set < 0.05 in order to reject H0.
For the Fisher sign and Mann-Whitney tests the hypotheses are:

• H0: Mbetter = Mworse
• H1: Mbetter < Mworse

Where M is the population median of the Pareto metric calculated on 5 samples. A
lower metric value is better than a higher metric value.
The correspondence between axis numbers and swarm types is:

1. EV: SOMAS swarm uses online evolution
2. NE: SOMAS swarm uses online search without evolution
3. NS: SOMAS swarm does not use online search

Example: the above image shows that both EV and NE outperform NS with
statistical significance, whereas they are indifferent when compared to each other.

186

T
ab

le
20

:
E

ff
ec

ti
ve

n
es

s
of

on
li
n
e

se
ar

ch
to

ac
co

m
p
li
sh

sw
ar

m
b
eh

av
io

rs
w

it
h

n
et

w
or

k
d
ea

ct
iv

at
io

n
an

d
ac

ti
va

ti
on

ac
tu

at
or

s

Epsilon Metric Hypervolume Metric R2 Metric
Behavior Fisher sign Mann-Whitney Fisher sign Mann-Whitney Fisher sign Mann-Whitney

test test test test test test

Enemy
Avoidance

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Intrusion
Elimination

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

DDoS
Protection

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Competition

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Information
Protection

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

18
7

T
ab

le
21

:
E

ff
ec

ti
ve

n
es

s
of

on
li
n
e

se
ar

ch
to

ac
co

m
p
li
sh

sw
ar

m
b
eh

av
io

rs
w

it
h
ou

t
n
et

-
w

or
k

d
ea

ct
iv

at
io

n
an

d
re

ac
ti

va
ti

on
ac

tu
at

or
s

Epsilon Metric Hypervolume Metric R2 Metric
Behavior Fisher sign Mann-Whitney Fisher sign Mann-Whitney Fisher sign Mann-Whitney

test test test test test test

Enemy
Avoidance

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Intrusion
Elimination

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

DDoS
Protection

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Competition

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

Information
Protection

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

1 2 3

1
2

3

Better

W
or

se

18
8

Appendix C. Network Destruction Experiments (Statistics plots)

Figure 56: Interpreting results diagrams

1 2

1
2

Better

W
or

se

Each grid cell is the p-value of a significance test. If the cell is completely black,
then the a value will have to have been set < 0.05 in order to reject H0.
For the Fisher sign and Mann-Whitney tests the hypotheses are:

• H0: Mbetter = Mworse
• H1: Mbetter < Mworse

Where M is the population median of the Pareto metric calculated on 5 samples. A
lower metric value is better than a higher metric value.
The correspondence between axis numbers and swarm types is:

1. V: SOMAS swarm has node deactivation and reactivation actuators
2. NV: SOMAS swarm does not have node deactivation and reactivation

actuators
Example: the above image shows that V statistically outperforms NV, but not with
statistical significance.

189

Table 22: Enemy Avoidance scenario network destruction experiments

Metric Statistical Test EV NE NS

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Epsilon

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Hypervolume

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

R2

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

190

Table 23: Intrusion Elimination scenario network destruction experiments

Metric Statistical Test EV NE NS

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Epsilon

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Hypervolume

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

R2

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

191

Table 24: DDoS scenario network destruction experiments

Metric Statistical Test EV NE NS

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Epsilon

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Hypervolume

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

R2

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

192

Table 25: Competition scenario network destruction experiments

Metric Statistical Test EV NE NS

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Epsilon

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Hypervolume

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

R2

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

193

Table 26: Info War scenario network destruction experiments

Metric Statistical Test EV NE NS

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Epsilon

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Hypervolume

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Fisher sign

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

R2

Mann-Whitney

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

194

Appendix D. Multi-Scenario Evolution Experiments (Statistics plots)

Figure 57: Interpreting results diagrams

1 2

1
2

Better

W
or

se

Each grid cell is the p-value of a significance test. If the cell is completely black,
then the a value will have to have been set < 0.05 in order to reject H0.
For the Fisher sign and Mann-Whitney tests the hypotheses are:

• H0: Mbetter = Mworse
• H1: Mbetter < Mworse

Where M is the population median of the Pareto metric calculated on 5 samples. A
lower metric value is better than a higher metric value.
The correspondence between axis numbers and swarm types is:

1. SBS: SOMAS swarm chromosome is only evaluated on a single behavior and
scenario.

2. MBS: SOMAS swarm chromosome is evaluated on multiple behaviors and
scenarios.

Example: the above image shows that MBS outperforms SBS with statistically
significance.

195

T
ab

le
27

:
E

ff
ec

ti
ve

n
es

s
of

m
u
lt

i-
sc

en
ar

io
ev

ol
u
ti

on
fo

r
si

m
p
le

an
d

co
m

p
le

x
b
eh

av
io

rs

Epsilon Metric Hypervolume Metric R2 Metric
Behavior Fisher sign Mann-Whitney Fisher sign Mann-Whitney Fisher sign Mann-Whitney

test test test test test test

Intrusion
Elimination

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

DDoS
Protection

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Competition

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

Information
Protection

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

1 2

1
2

Better

W
or

se

19
6

Appendix E. Sofware Design Concepts

E.1 Object Oriented Design

The rationale behind object oriented design is to avoid redundancy in code and

make code reuse as straightforward as possible. Consequently, there are three primary

characteristics that define object oriented design.

• Encapsulation:

All the necessary datastructures, variables, methods, and functions for a given

item as grouped so that the user only needs to be aware of a shared interface

and does not need to know any of the underlying details.

• Loose coupling:

Coupling entails the degree that items depend on each other, and how much

they know about their counterpart’s internals. The items that are encapsulated

are simplified as much as possible, so that they tend to have only one overall

purpose, while keeping the dependencies between items low. For instance, an

object oriented representation of a tooth brush has a single object for the bris-

tles, instead of an object for each bristle. If there is an object for each bristle,

then there is a large number of items that the handle has to be coupled with.

• Polymorphism:

Polymorphism is defined by the principle of Liskov substitution. This principle

states if one object can be substituted in the place of another for a certain func-

tion, for instance circle.volume() makes just as much sense as square.volume(),

then they belong to a parent class, i.e. shape.volume(). Polymorphism is the

calling of the same function on different types.

E.2 Properties Design Pattern

The properties design pattern is based on object oriented programming. There

are two main differences between the two techniques. The first is that while the

197

non-abstract class inheritance graph for object oriented programming is a forest, the

inheritance graph for the properties design pattern is a graph. The second is that

class structures can only be defined at compile time in object oriented programming

(without specialized low level coding), whereas class structures can be define during

runtime with the properties design pattern.

E.2.1 General Description. The properties design pattern is composed of

two basic objects: a Thing and a Machine. Thing consists of a table that maps

property names to objects. There are two kinds of accessors: direct and indirect. The

combination of the two allows multiple Things to share the same property Object.

The Machine is a subclass of Thing, which simply adds an execute function.

The properties design pattern is used as the fundamental concept of the systems

SOMAS design, due to the two features differentiating it from object oriented design.

Thus, it is a more general design and also allows certain methods described below

that OO does not allow, or does not provide a simple and easy mechanism.

The properties model is also slightly augmented in that the execution of either

a Thing or Machine method returns the Thing or Machine object. This allows oper-

ations to be chained together, with the possible inclusion of a glue procedure. This is

an incorporation of Haskell’s monad design pattern. The most straightforward ben-

efit is conciseness of coding using the properties design pattern. A more theoretical

benefit is that a sequence of operations can be treated as an entity in itself. Chaining

together operations and using the chain as a first class object, i.e. can be passed and

returned from functions, is a very effective functional programming technique.

E.2.2 Advantages.

• Loose coupling:

Since all operations share the same basic class, it is simple to tie anything de-

signed with the properties model into an external library. The interface with

external libraries goes two ways: when used by the SOMAS system, a library

198

operation is encapsulated within the Machine class; and when a SOMAS op-

eration is used by an external library, it only needs to set the properties it is

concerned with, which should encompass all similar potential libraries.

• Bottom up programming:

When creating a certain operation, often it is easier to specify what is required

than how it is acquired. The use of properties allows requirements to be a

primary concern over acquirement. Properties are used in the operation as

needed, and the properties can easily be artificially filled for testing purposes.

This allows easy segmentation of code for testing purposes.

• Runtime class specification:

A significant impediment of the traditional approach to OO as in Java and C++

is that it is usually impossible, or very difficult, to produce new classes during

runtime. However, this is easy to do when a class is merely defined by a set of

properties, since the properties can be defined at runtime.

• Model checking (top down programming):

Since all objects are of the same type and all allow their properties to be accessed

in the same way, it is possible to specify a general model checking framework.

For instance, to check that a system has been implemented correctly, the shar-

ing of properties between objects is validated by checking whether objects share

the same object for a specific property. The existence of properties is simply

validated by testing whether a given property returns a null. These basic tech-

niques are amenable to further sophistication, such as testing whether a certain

invariant holds before and/or after an operation. This is possible because all

operations are also of the same basic type, and consequently can all be tested

in the same way.

The benefit of this model checking methodology is that it makes debugging sim-

pler. It is also possible to use computational logic to deduce general properties

of the system.

199

Furthermore, since, as mentioned, the design specifies a graph, graph theory can

be used for model checking. For example, in some cases a partially ordered set

is necessary. The problem with specifying the dependency relation in a partially

ordered set is that a cyclical dependency can be created. Cycle detection can

find such problems. General software design techniques can also be measure.

For instance, if a system has very high connectivity, then it is not very loosely

coupled and is likely to be badly designed.

E.2.3 Disadvantages. The properties are similar to Java’s OO system, so

there is redundancy in the implementation. Such redundancy also implies slower

runtimes and greater memory usage.

Java and C++’s OO system is combined with many common integrated devel-

opment environments, which can alert the programmer about errors in their code as

they are writing it. Since the properties design pattern is not integrated with these

same IDEs, their convenience can not be exploited to the same degree.

The code may be more verbose in some cases than if implemented directly using

a traditional OO system.

200

Appendix F. Behavior Range

• level 0 - single agent

– change location

– look for information

– create information

The mechanism of information transfer is part of the system that the agent

is in, so this behavior encompasses both static and dynamic forms of in-

formation. I.e. pheromones and packet based communication.

– change information

– react to information

• level 1 - single agent

– set waypoint

Probably can consist of just setting a host IP, MAC, etc address

– return to waypoint

Use recorded host info to get routed back

– release pheromone/message

– look for pheromone/message

– create decoy

– create new agent

– destroy agent

– attack target

– adapt to information

This can be like a chameleon, so the agent looks like normal data. It can

also be used to represent the kind of data it is most suited for, which works

into the Characteristic Adaptation behavior.

201

– specific signals

∗ behavior trigger

∗ behavior modification

This is a meta operator where agents can directly modify each others

rule set

• level 2 - multi agent There are only a small set of behaviors at this level, it is

similar to level 0 in that it defines a basic behavior set.

– triangulate (needs multiple nodes) This behavior is integral to many other

mult-agent behaviors, since it provides a spacial overlay that can be used

to calculate such behaviors as convergence or divergence.

∗ position of other agents

∗ position of targets

– converge behavior

Positive feedback, agents copying each other’s behavior parameters. This

also encompasses location and belief convergence.

– diverge behavior

Negative feedback, agents varying their behavior parameters based on

agents’ observations of each other This also encompasses location and belief

divergence.

– cluster

This behavior can be described by something like k-means clustering or

the like. This can be based on a system where agents are also pheromones,

where their pheromone resemble some information signature (i.e. a specific

file, or IP subnet), and they are attracted or repelled based on similarity.

Also, this can be a combination of sync and diverge behaviors. In this

case, the clustering takes place at a non physical level. Consequently,

clustering can be considered a generic behavior that takes place at a number

of different levels.

202

• level 3 - SO

– Attack

∗ Deceive

∗ Lure (honey pot)

∗ Ambush

∗ Moving target discovery

– Defense

∗ Quarantine

∗ Attack discovery

∗ Identify abnormal behavior

– Surveillance

∗ Map network control points

– Generic

∗ Special ops behaviors

For instance: formations, decoys, etc.

∗ Discover rogue agent

∗ Retreat from discovery

∗ Characteristic adaptation

A metaphor for this behavior is the bodywide signalling system, i.e.

the nervous system. However, this is different than just plain commu-

nication. This is a high level behavior where agents are created that

proliferate in a certain network. The interaction is bi-directional, so

agents both adapt to information and change information.

This general behavior can do a couple things:

∗ Artificial immune system

∗ QoS (certain agent adaptations retard the traffic, and others accelerate

it) - using the wasp competition ranking

203

∗ Create new swarm for new objective

– Distribute over network

204

205

Appendix G. QuERIES Examination

G.1 Overview

The QuERIES methodology [30] uses three primary techniques:

• decision theory

• attack modelling with a POMDP model

• using markets to estimate probabilities for POMDPs

Assuming that the market effectiveness assumption holds such that a red team can

accurately estimate the POMDP’s transition and observation probabilities, the rest

of the model appears to be a formally valid method for accomplishing risk analysis.

The different costs in the decision grid are generally estimable, and a POMDP

model, while it is PSPACE-hard [88] to derive an optimal policy, can still be used to

generate approximate policies with techniques such as random point value

iteration [121] and principle component analysis. These approximation techniques

have shown success in a real world problem of robot navigation [122].

G.2 Need for Modelling Multiple Attacks

However, the general technique assumes attacks operate mutually independently of

any other attack. While other attacks may be proceeding at the same time, they

cannot have any influence on each other, otherwise the assumption behind the

POMDP model does not hold. Since the QuERIES technique is being developed for

the DoD and other owners of high value IP it is important that this assumption is

accurat.

However, it is unlikely that attacks mounted against such customers will be isolated

and independent. Infact, the current reports of the many and ongoing attacks

against DoD show anything but isolated, mutually independent attacks. Instead,

there are constant attacks occurring across the whole range of attack vectors, both

orchestrated and independent.

206

In order to model such attacks, decentralized POMDP (DEC-POMDP) models [22]

for the orchestrated attacks and interactive POMDP (I-POMDP) models [40] for the

multiple independent attacks are necessary for accurate modelling. These models are

even more intractable. NEXP-complete for DEC-POMDPs [22]. Unsolvable due to

infinite belief nesting in the case of I-POMDPs [40]. Again, with certain assumptions

and by using approximation algorithms it is possible to generate policies from such

models. However, current research has not scaled to significant problem sizes yet.

G.3 Need for Adaptive Attack Vectors

Another problem is that POMDP models do not adapt themselves. During the

course of an attack, an attacker is bound to change his attack method, and thus his

states and state transition probabilities, as soon as defense operators begin to

counteract what he is doing. While computational models are incapable of

representing the full range of what humans can do in such a scenario, it is possible

to at least improve on POMDP models by augmenting the models with a model

transition function. In this way, the models can adapt themselves [56].

An issue with such adapted POMDP models is that they can be potentially Turing

complete, depending on the nature of the model transition function. If the models

become Turing complete, then it is impossible to generate a policy from them in the

general case due to the halting problem.

G.4 Addressing Needs With Top Down Policy Generation

That being said, there is a tractable technique to generate approximate policies from

augmented DEC-POMDP and I-POMDP models. The standard techniques for

generating policies focus on a bottom up approach: the final solution is assembled

from partial solutions using some kind of heuristic search algorithm.

It is also possible to generate policies using a top down approach where the space of

complete solution is searched. The way this works is to first generate an arbitrary

207

policy (which is a complete solution), evaluate it, then assemble new policies based

the evaluated policies. This process repeats until a halting condition is reached, such

as convergence or number of iterations. There are many existing algorithms that use

this procedure, such as simulated annealing, evolutionary algorithms, tabu search,

and ant colonies.

This technique allows policies to be generated that can be followed by multi-agent

systems and are Turing complete, in a tractable amount of time [56]. Thus, the

policies address the two needs of modelling multiple attackers and adaptive attack

vectors.

The result is that top down policy generation using solution space search is capable

of providing more realistic attack models for QuERIES.

208

Bibliography

1. “Autonomous Robot”, February 2009. URL
en.wikipedia.org/wiki/Autonomous robot.

2. “File Transfer Protocol”, february 2009. URL wikipedia.org/wiki/Ftp.

3. “Finite State Machine”, february 2009. URL
wikipedia.org/wiki/Finite state machine.

4. “Internet Protocol”, february 2009. URL
wikipedia.org/wiki/Internet Protocol.

5. “The Law of Large Numbers”, February 2009. URL
en.wikipedia.org/wiki/Law of large numbers.

6. “NS2”, february 2009. URL www.isi.edu/nsnam/ns.

7. “OPNet”, february 2009. URL www.opnet.com.

8. “OSI model”, february 2009. URL wikipedia.org/wiki/Osi stack.

9. “P (complexity)”, february 2009. URL wikipedia.org/wiki/P (complexity).

10. “Transmission Control Protocol”, february 2009. URL
wikipedia.org/wiki/Transmission Control Protocol.

11. “Turing Completeness”, february 2009. URL
wikipedia.org/wiki/Turing comptele.

12. Akass, Clive. “Sweden and Turkey in hacking war”. The Test Bed, 2007.

13. Arabiya, Al. “Al Arabiya hit by Sunni-Shiite hacking war”. Al Arabiya, 2008.

14. Arabiya, Al. “Sunni-Shiite hacking war disables 900 websites”. Al Arabiya,
2008.

15. Bäck, Thomas. “Binary strings”. Evolutionary Computation 1 Basic
Algorithms and Operators. Institute of Physics Publishing, 2000.

16. Bäck, Thomas, D. B. Fogel, and T. Michalewicz (editors). Evolutionary
Computation 1 Basic Algorithms and Operators. Springer, 2000.

17. Bak, Per, Chao Tang, and Kurr Wiesenfeld. “Self-organised criticality”. The
American Physical Society, 1988.

18. Baldassarre, Gianluca, Stefano Nol, and Domenico Parisi. “Evolving Mobile
Robots Able to Display Collective Behaviors”. Artificial Life 9. Massachusetts
Institute of Technology, 2003.

19. Bar-Noy, Amotz, Samir Khuller, and Baruch Schieber. The Complexity of
Finding the Most Vital Arcs and Nodes. Technical report, IBM Research
Division and University of Maryland, 1995.

209

20. Barnes, Julian E. “Hacking could become weapon in US arsenal”. Los Angeles
Times, September 2008.

21. Berinato, Scott. “A Few Good Information Security Metrics”. CSO Security
and Risk, 2005.

22. Bernstein, Daniel S., Robert Givan, Neil Immerman, and Shlomo Zilberstein.
“The Complexity of Decentralized Control of Markov Decision Processes”.
Need to find bibtex.

23. Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer,
2006.

24. Bleuler, Stefan, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. “PISA —
A Platform and Programming Language Independent Interface for Search
Algorithms”. Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy
Deb, and Lothar Thiele (editors), Evolutionary Multi-Criterion Optimization
(EMO 2003), Lecture Notes in Computer Science, 494 – 508. Springer, Berlin,
2003.

25. Boschetti, F. and R. Gray. “Emergence and Computability”. Emergence:
Complexity and Organization, volume 9. The Complexity Society, the Institute
for the Study of Coherence and Emergence, and Cognitive Edge, 2007.

26. Bradley, Tony. “Counter-Hacking : savior or vigilante”. About.com, 2005.

27. Branke, J., Moez Mnif, Christian Miller-Schloer, Holger Prothmann, Urban
Richter, Fabian Rochner, and Hartmut Schmeck. “Organic Computing :
Addressing Complexity by Controlled Self-Organization”.

28. Brooks, R. A. “Intelligence Without Representation”. Artificial Intelligence,
139–159. 1991.

29. Camazine, S., J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton University
Press, 2003.

30. Carin, Lawrence, George Cybenko, and Jeff Hughes. “Cybersecurity Strategies:
The QuERIES Methodology”. IEEE Computer, 2008.

31. Carlin, Alan and Shlomo Zilberstein. “Value-Based Observation Compression
for DEC-POMDPs”. Proceedings of the 7th International Conference on
Autonomous Agents and Multi Agent Systems. International Foundation for
Autonomous Agents and Multi Agent Systems, 2008.

32. Cassandra, Anthony, Marian Rodine, Shilpa Bondale, Steve Ford, and David
Wells. “Using POMDP-Based State Estimation to Enhance Agent System
Survivability”. IEEE, 2005.

210

33. de Castro, Leandro Nunes. Fundamentals of Natural Computing (Chapman &
Hall/Crc Computer and Information Sciences). Chapman & Hall/CRC, 2006.
ISBN 1584886439.

34. Çakar, Emre, Moez Mnif, Christian Müller-Schloer, Urban Richter, and
Hartmut Schmeck. “Towards a Quantitative Notion of Self Organization”.
IEEE, 2007.

35. Center, SANS Internet Storm. “Survival Time”, february 2009. URL
isc.sans.org/survivaltime.htmbl.

36. Coello, Carlos A. Coello, Gary B. Lamont, and David A. Van Veldhuizen.
Evolutionary Algorithms for Solving Multi-Objective Problems, chapter MOEA
Parallelization. Springer, 2007.

37. Das, Subrata (editor). Foundations of Decision-Making Agents: Logic,
Probability, and Modality. World Scientific Press, 2008.

38. Dembski, William. Conservation of Information in Search. Technical report,
Center for Informatics, 2006.

39. Dewri, Rinku, nayot Poolsappasit, Indrajit Ray, and Darrell Whitley.
“Optimal Security Hardening Using Multi-objective Optimization on Attack
Tree Models of Networks”. CCS, 2007.

40. Doshi, P. “On the Role Of Interactive Epistemology in Multiagent Planning”.
Artificial Intelligence and Pattern Recognition. 2007.

41. Doshi, Prashant and Piotr Gmytrasiewicz. A Particle Filtering Algorithm for
Interactive POMDPs. Technical report, National Science Foundation, 2005.

42. Doziert, Gerry, Douglas Brownf, John Hurley, and Krystal Cainf. Vulnerability
Analysis of AIS-Based Intrusion Detection Systems via Genetic and Particle
Swarm Red Teams. Technical report, Auburn University and Clark-Atlanta
University and The Boeing Company, 2004.

43. Eaton, John. “Octave”, february 2009. URL www.gnu.org/software/octave.

44. Fisher, Dennis. “Storm, Nugache lead dangerous new botnet barrage”.
Information Security, 2007.

45. Foukia, Noria. “IDReAM: Intrusion Detection and Response Executed with
Agent Mobility the Conceptual Model Based on Self- organizing Natural
Systems”. ESOA, 2004.

46. Frank, Eibe and Ian Witten. “Weka”, december 2008. URL
www.cs.waikato.ac.nz/ ml/weka/index.html.

47. Gagné, Christian and Marc Parizeau. “Genericity in Evolutionary
Computation Software Tools: Principles and Case-Study”. International
Journal on Artificial Intelligence Tools, 15(2):173–194, April 2006.

211

48. Gmytrasiewicz, Piotr J. and Prashant Doshi. “Exact Solutions of Interactive
POMDPs Using Behavioral Equivalence”. Association for the Advancement of
Artificial Intelligence, May 2006.

49. Group, Swarm Development. “SWARM”, 1999. URL www.swarm.org.

50. Haken, H. Information and Self-Organization: A Macroscopic Approach to
Complex Systems. Springer, 1988.

51. Hansen, EA, DS Berstein, and S Zilberstein. “Dynamic Programming for
Partially Observable Stochastic Games”. Proceedings of the National
Conference on Artificial Intelligence. 2004.

52. Haykin, Simon. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1999.

53. Heylighen, Francis. “The Science of Self-Organization and Adaptivity”. The
Encyclopedia of Life Support Systems. 2002.

54. Hinson, Gary. “Security metrics: more is not better”. Internet, August 2008.
URL blog.isc2.org/isc2 blog/2008/08/security-metric.html.

55. Hofstader, D. R. Godel, Escher, Bach: An eternal golden braid. The Harvester
Press, Hassocks, Sussex, 1979.

56. Holloway, Eric. Self Organized Multi Agent Swarms (SOMAS) for
Accomplishing Network Goals. Master’s thesis, Air Force Institute of
Technology, March 2009.

57. Hoschek, Wolfgang. “Colt”, september 2004. URL
acs.lbl.gov/ hoschek/colt.

58. Hughes, BD. Random Walks and Random Environments. Oxford University
Press, 1995.

59. Igel, Christian and Marc Toussaint. “On Classes of Functions For Which No
Free Lunch Results Hold”. Elsevier Science, 2003.

60. Ihaka, Ross and Robert Gentleman. “R”, december 2008. URL
www.r-project.org.

61. Jennings, Nicholas R. and Michael Wooldridge. Intelligent Agents: Theory and
Practice. Technical report, ESPRC, 1995.

62. Jennings, Nicholas R. and Michael Wooldridge. Agent-Oriented Software
Engineering. Technical report, University of London, 2000.

63. Jesdanun, Anick. “US military prepares cyberwarfare offensive”. USA Today,
April 2008.

64. Kaelbling, L. P., M. L. Littman, and A. R. Cassandra. “Planning and acting in
partially observable stochastic domains”. Artificial Intelligence, 101:99–134,
1998.

212

65. Karrels, Daniel R. and Gilbert Peterson. “CyberCraft: Protecting Air Force
Electronic Systems with Lightweight Agents”. November 20007.

66. Kelso, J A Scott. “Phase Transitions and Critical Behavior in Human
Bimanual Coordination”. American Physiological Society, 1984.

67. Kerner, Sean Michael. “Google Gadget Under Attack at Black Hat”.
Internet.com, february 2009.

68. Kim, Jungwon and Peter J. Bentley. Towards an Artificial Immune System for
Network Intrusion Detection: An Investigation of Clonal Selection with a
Negative Selection Operator. Technical report, University College London,
2001.

69. Lamont, Gary. “A Comparison of NSGA-II and SPEA-2”.

70. Lehn, Jean-Marie. Supramolecular Chemistry - Scope and Perspectives -
Molecules - Supermolecules - Molecular Devices. Technical report, Institut Le
Bel, Universit Louis Pasteur, 2987.

71. Li, M. and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, 1997.

72. Liu, Lei, Stefan Thanheiser, and Hartmut Schmeck. “A Reference Architecture
for Self-organizing Service-Oriented Computing”. ARCS, 205–219. Springer,
2008.

73. Liu, Yang and Kevin M. Passino. Swarm Intelligence: Literature Overview.
Technical report, Ohio State University, 2006.

74. Lucas, J. R. “Minds, machines, and Gödel”. Philosophy, 36, 1961.

75. Luke, Sean, Gabriel Catalin Balan, Keith Sullivan, and Liviu Panait.
“MASON”, june 2008. URL cs.gmu.edu/ eclab/projects/mason.

76. Luke, Sean, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Elena
Popovici, Keith Sullivan, Joseph Harrison, Jeff Bassett, Robert Hubley, and
Alexander Chircop. “Java-based Evolutionary Computation Research System”,
May 2008. URL www.cs.gmu.edu/ eclab/projects/ecj.

77. Manna, Zohar. Mathematical Theory of Computation. McGraw Hill, 1974.

78. MathWorks. “MATLAB”, february 2009. URL www.mathworks.com.

79. Matoušek, Petr, Jaroslav Ráb, Ondřej Ryšavý, and Miroslav Švéda. “A Formal
Model for Network-wide Security Analysis”. 15th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems.
2008.

80. McMillan, Robert. “Black Hat: Web Browser Attack Skirts Corporate
Firewall”. Computerworld, 2007.

213

81. Metcalfe, R. “Metcalfe’s Law: A Network Becomes More Valuable As It
Reaches More Users”. Infoworld, 1995.

82. Michalewicz, Zbigniew and David B. Fogel (editors). How to Solve it: Modern
Heuristics. Springer, 1998.

83. Milton, J. Susan and Jesse C. Arnold. Introduction to Probability and
Statistics, chapter Chapter 7 Estimation. McGraw Hill, 2003.

84. Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. “Intrusion
Detection Using Neural Networks and Support Vector Machines”. IEEE, 2002.

85. Naveh, Barak. “JGraphT”, september 2008. URL jgrapht.sourceforge.net.

86. Newman, Mark. “The Physics of Networks”. Physics Today, November 2008.

87. Nolte, T., H. Hansson, and LL Bello. “Automotive Communications-Past,
Current and Future”. IEEE INternational Conference on Emerging
Technologies. 2005.

88. Norwig, P. and S. Russell. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

89. Nowak, Dustin. Exploitation of Self Organization in UAV Swarms for in
Combat Environments. Master’s thesis, Air Force Institute Of Technology,
2007.

90. Nowostawski, Mariusz, Martin Purvis, and Stephen Cranefield. “An
Architecture for Self-organising Evolvable Virtual Machines”. ESOA. 2004.

91. Odlyzko, A. and B. Tilly. A Refutation of Metcalfe’s Law and a Better
Estimate for the Value of Networks and Network Interconnections. Technical
report, University of Minnesota, 2005.

92. O’Madadhain, Joshua, Danyel Fisher, Tom Nelson, Scott White, and Yan-Biao
Boey. “JUNG”, July 2008. URL jung.sourceforge.net.

93. Packard, Katie. “Report Helps Define, Detect Insider Threats”. AFCEA Signal
Connections, 2009.

94. Pamula, Joseph, Sushil Jajodia, Paul Ammann, and Vipin Swarup. “A
Weakest-Adversary Security Metric for Network Configuration Security
Analysis”. ACM QoP, 2006.

95. Panait, Liviu and Sean Luke. Cooperative Mult-Agent Learning: The State of
the Art. Technical report, George Mason University, 2005.

96. Papazoglou, Mike P. and Willem-Jan van den Heuvel. Service Oriented
Architectures: Approaches, Technologies, and Research Issues. Technical
report, Tilburg University, 2005.

97. Payne, Shirley C. A Guide to Security Metrics. Technical report, SANS
Institute, 2007.

214

98. Pearl. Intelligent Search Strategies for Computer Problem Solving. Addison
Wesley, 1984.

99. Pohlheim, Hartmut. “GEATbx”, July 2001. URL www.geatbx.com.

100. Price, Ian and Dustin Nowak. “Swarmfare”, May 2005.

101. Prokopenko, M., F. Boschetti, and A. Ryan. “An Information-Theoretic
Primer On Complexity, Self-Organisation And Emergence”. Advances in
Complex System, 2006.

102. Prokopenko, Mikhail, Vadim Gerasimov, and Ivan Tanev. Measuring
Spatiotemporal Coordination in a Modular Robotic System. Technical report,
CSIRO Information and Communication Technology Centre and Doshisha
University and ATR Network Informatics Laboratories, 2005.

103. Rathnasabapathy, Bharaneedharan and Piotr Gmytrasiewicz. “Formalizing
Multi-Agent POMDP’s in the context of network routing”. Proceedings of the
36th Hawaii International Conference on System Sciences. IEEE, 2003.

104. Reed, David P. “That Sneaky Exponential - Beyond Metcalfe’s Law to the
Power of Community Building”. Context Magazine, 1999.

105. Reynolds, C. “Flocks, herds, and schools: A distributed behavioral model”.
Computer Graphics, volume 21, 25–34. 1987.

106. Rosenblatt, Joel. “Security Metrics: A Solution in Search of a Problem”.
Educause Quarterly, (3), 2008.

107. Rothlauf, Franz. Representations for Genetic and Evolutionary ALgorithms.
Physica-Verlag, 2002.

108. Saltzer, J. H., D. P. Reed, and D. D. Clark. “End-To-End Arguments in
System Design”. ACM Transactions on Computer Systems, 1984.

109. Sanders, William H, Kaustubh R Joshi, Matti A Hiltunen, and Richard D
Schlichting. Infrastructure Reliability and Security Management Using Partially
observable Markov Decision Processes. Technical report, AT&T, 2006.

110. Schlegel, Tino, Peter Braun, and Ryszard Kowalczyk. “Towards autonomous
mobile agents with emergent migration behaviour”. AAMAS ’06: Proceedings
of the fifth international joint conference on Autonomous agents and multiagent
systems, 585–592. ACM, New York, NY, USA, 2006. ISBN 1-59593-303-4.

111. Schneier, Bruce. “The Nugache Worm/Botnet”. Schneier on Security, 2007.

112. Searle, J. R. The Rediscovery of the Mind. MIT Press, 1992.

113. Seltzer, Larry. “The secret China-US hacking war”. eWeek, March 2008.

114. Serugendo, Giovanna Di Marzo, Marie-Pierre Gleizes, and Anthony
Karageorgos. “Self-Organization in Multi-Agent Systems”. The Knowledge
Engineering Review, 165–189. Cambridge University Press, 2005.

215

115. Serugendo, Giovanni Di Marzo, Marie-Pierre Gleizes, and Anthony
Karageorgos. “Self Organization and Emergence in MAS: An Overview”.
Informatica. The Slovene Society Informatika, 2006.

116. Servat, David and Alexis Drogoul. “Combining amorphous computing and
reactive agent-based systems: a paradigm for pervasive intelligence?” AAMAS,
441–448. ACM, 2002. URL http://doi.acm.org/10.1145/544741.544842.

117. Shalizi, Cosma Rohilla, Robert Haslinger, Jean-Baptiste Rouquier,
Kristina Lisa Klinkner, and Cristopher Moore. “Automatic Filters for the
Detection of Coherent Structure in Spatiotemporal Systems”, July 29 2005.
URL http://arxiv.org/abs/nlin/0508001.

118. Shannon, Claude E. “A mathematical theory of communication”. The Bell
System Technical Journal, 1948.

119. Siganos, Georgos, Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos.
“Power Laws and the AS-Level Internet Topology”. IEEE/ACM Transactions
on Networking, 11(4), august 2003.

120. Smith-Sweeney, Brian. Shifting Landscape of IT Security. Technical report,
NERCOMP, 2008.

121. Spaan, Matthijs T. J. and Nikos Vlassis. “Perseus: Randomized Point-based
Value Iteration for POMDPs”. Journal of Artificial Intelligence Research, 2005.

122. Spaan, MTJ and N. Spaan. “A Point-Based POMDP Algorithm for Robot
Planning”. Proceedings of International Conference on Robotics and
Automation. IEEE, 2004.

123. Stein, William. “Sage”, february 2009. URL www.sagemath.org.

124. Stokes, Jon. “Prearing for cyber warfare: US Air Force floats botnet plan”.
Ars Technica, May 2008.

125. Storn, Rainer, and Kenneth Price. “Differential Evolution - A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces”. Journal
of Global Optimization, 11:341–359, 1997.

126. Stytz, Martin R., Dale E. Lichtblau, and Sheila B. Banks. Toward using
intelligent agents to detect, assess, and counter cyberattacks in a
network-centric environment. Technical report, Institute for Defense Analysis,
2005.

127. Tanenbaum, Andrew S. and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, 2006.

128. Thomas, Tavaris J. Fire Ant: An Algorithm Providing High-Performance
Distributed Fault-Tolerant Communication for Internet-Scale Network
Survivability. Ph.D. thesis, Floriday State University, 2004.

216

129. Thomas, Timothy L. “Al Queda and the internet: the danger of
cyberplanning”. Parameters, 2003.

130. Tye, Michael. “Qualia”, July 2007. URL
plato.stanford.edu/entries/qualia.

131. Vollset, Einar. “Java Network Simulator”, June 2007. URL
jns.sourceforge.net.

132. Wall, Matthew. “GAlib”, March 2007. URL lancet.mit.edu/ga/dist.

133. Weisstein, Eric W. “Fisher Sign Test”. MathWorld-A Wolfram Web Resource,
March 2009. URL http://mathworld.wolfram.com/FisherSignTest.html.

134. White, Tony and Bernard Pagurek. Towards Multi-Swarm Problem Solving in
Networks. Technical report, Carleton University, 1999.

135. Williams, Thomas and Colin Kelley. “GnuPlot”, march 2008. URL
www.gnuplot.info.

136. Wilson, Tim. “DoS Gets Political In Estonia”. Dark Reading, 2007.

137. Wolf, Tom De and Tom Holvoet. Emergence and Self-Organisation: a
statement of similarities and differences. Technical report, Department of
Computer Science, KULeuven, 2004.

138. Wolpert, David H. and William G. Macready. No Free Lunch Theorems for
Search. Technical report, Santa Fe Institute, February 1995.

139. Wolpert, David H. and William G. Macready. No Free Lunch Theorems for
Optimization. Technical report, Santa Fe Institute and TXN Inc., December
1996.

140. Yamins, Daniel. “The emergence of global properties from local interactions:
static properties and one-dimensional patterns”. Hideyuki Nakashima,
Michael P. Wellman, Gerhard Weiss, and Peter Stone (editors), AAMAS,
1122–1124. ACM, 2006. ISBN 1-59593-303-4. URL
http://doi.acm.org/10.1145/1160633.1160837.

141. Zhang, Zonghua and Pin-Han Ho. “Janus: A dual-purpose analytical model for
understanding, characterizing and countermining multi-stage collusive attacks
in enterprise networks”. Journal of Network and Computer Applications,
32(3):710–720, 2009.

142. Zitzler, Eckart and Simon Künzli. “Indicator-Based Selection in Multiobjective
Search”. Xin Yao et al. (editors), Parallel Problem Solving from Nature (PPSN
VIII), 832–842. Springer-Verlag, Berlin, Germany, 2004.

217

Vita

Eric M. Holloway received a B.Sc. degree in computer science from Biola University,

California, and graduated Summa Cum Laude. He is a Masters of Computer Science

student at the Air Force Institute of Technology, as well as a communications officer

in the United States Air Force.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

218

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

19-03-09 Master's Thesis August 2007 - March 2009

Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

09-143Holloway, Eric, M., First Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640
WPAFB OH 45433-8865

AFIT/GCS/ENG/09-02

ATTN: National Security Agency
Ms. Christine M. Nickell, Chief, Academic Outreach (I02E)
I02E, Ste 6744, 9800 Savage Rd, Ft. Meade, MD 20755-6744
(comm) 410-854-6206, (fax) 410-854-7043
c.nicke2@radium.ncsc.mil

NSA/IASP

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Computer network security is a very serious concern in many commercial, industrial, and military environments. This paper
proposes a new computer network security approach defined by self organized agent swarms (SOMAS) which provides a novel
computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves
based upon the partially observable Markov decision process (POMDP) formal model and the more complex Interactive-POMDP
and Decentralized-POMDP models, which are augmented with a new F(*-POMDP) model. Example swarm specific and network
based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of
this proposed SOMAS architecture, and the effectiveness of self organization and entangled hierarchies.

computer network security, cyberspace, cybercraft, agent swarms, self-organization, entangled hierarchies, multi-objective
optimization, evolutionary computation

U U U UU 240

Gary B. Lamont, PhD, AFIT/ENG

(937) 785-3636, x4718 (gary.lamont@afit.edu)

Reset

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATES COVERED. Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers
as they appear in the report, e.g. 1F665702D1257;
ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and
monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include
copyright information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition
number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the
top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if
the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

